MarkovModel m = new MarkovModel(2,true,true,markovPTAUseMatrix);
Set<List<Label>> plusStrings = buildSet(new String[][] { new String[]{"a","p"} },config,converter), minusStrings = buildSet(new String[][] { new String[]{"a","u"} },config,converter);
m.createMarkovLearner(plusStrings, minusStrings,false);
final LearnerGraph graph = FsmParser.buildLearnerGraph("A-u->B-p->B","testConstructExtendedGraph1",config, converter);
MarkovClassifier cl = new MarkovClassifier(m,graph);
Map<CmpVertex, Map<Label, MarkovOutcome>> newTransitions = cl.predictTransitions();
Assert.assertTrue(newTransitions.isEmpty());// not enough evidence to update, hence nothing should be recorded.
final LearnerGraph expected = FsmParser.buildLearnerGraph("A-u->B-p->B","testConstructExtendedGraph1",config, converter);
LearnerGraph actual = cl.constructMarkovTentative();
DifferentFSMException ex = WMethod.checkM(expected, actual);
if (ex != null)