Package org.encog.neural.networks.training.propagation.resilient

Examples of org.encog.neural.networks.training.propagation.resilient.ResilientPropagation.iteration()


    rprop2.iteration();
    TrainingContinuation state = rprop2.pause();
    rprop2 = new ResilientPropagation(network2,trainingData);
    rprop2.resume(state);
    rprop2.iteration();
    rprop2.iteration();
   
    // verify weights are the same
    double[] weights1 = NetworkCODEC.networkToArray(network1);
    double[] weights2 = NetworkCODEC.networkToArray(network2);
   
View Full Code Here


    BasicNetwork network = EncogUtility.simpleFeedForward(2, 5, 7, 1, true);
    (new ConsistentRandomizer(-1,1)).randomize(network);
    MLTrain rprop = new ResilientPropagation(network, trainingData);
    int iteration = 0;
    do {
      rprop.iteration();
      iteration++;
    } while( iteration<5000 && rprop.getError()>0.01);
    Assert.assertTrue(iteration<40);
  }
 
View Full Code Here

    elmanPattern.addHiddenLayer(hidden);
    elmanPattern.setOutputNeurons(ideal);
    BasicNetwork network = (BasicNetwork)elmanPattern.generate();
    MLDataSet training = RandomTrainingFactory.generate(1000, 5, network.getInputCount(), network.getOutputCount(), -1, 1);
    ResilientPropagation prop = new ResilientPropagation(network,training);
    prop.iteration();
    prop.iteration();   
  }
 
  public void performJordanTest(int input, int hidden, int ideal)
  {
View Full Code Here

    elmanPattern.setOutputNeurons(ideal);
    BasicNetwork network = (BasicNetwork)elmanPattern.generate();
    MLDataSet training = RandomTrainingFactory.generate(1000, 5, network.getInputCount(), network.getOutputCount(), -1, 1);
    ResilientPropagation prop = new ResilientPropagation(network,training);
    prop.iteration();
    prop.iteration();   
  }
 
  public void performJordanTest(int input, int hidden, int ideal)
  {
    // we are really just making sure no array out of bounds errors occur
View Full Code Here

    jordanPattern.addHiddenLayer(hidden);
    jordanPattern.setOutputNeurons(ideal);
    BasicNetwork network = (BasicNetwork)jordanPattern.generate();
    MLDataSet training = RandomTrainingFactory.generate(1000, 5, network.getInputCount(), network.getOutputCount(), -1, 1);
    ResilientPropagation prop = new ResilientPropagation(network,training);
    prop.iteration();
    prop.iteration();   
  }
 
  public void testElman() 
  {   
View Full Code Here

    jordanPattern.setOutputNeurons(ideal);
    BasicNetwork network = (BasicNetwork)jordanPattern.generate();
    MLDataSet training = RandomTrainingFactory.generate(1000, 5, network.getInputCount(), network.getOutputCount(), -1, 1);
    ResilientPropagation prop = new ResilientPropagation(network,training);
    prop.iteration();
    prop.iteration();   
  }
 
  public void testElman() 
  {   
    performElmanTest(1,2,1);
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.