Package org.encog.neural.networks.training.propagation.resilient

Examples of org.encog.neural.networks.training.propagation.resilient.ResilientPropagation.iteration()


   
    // train network 1, no continue
    ResilientPropagation rprop1 = new ResilientPropagation(network1,trainingData);
    rprop1.iteration();
    rprop1.iteration();
    rprop1.iteration();
    rprop1.iteration();
   
    // train network 2, continue
    ResilientPropagation rprop2 = new ResilientPropagation(network2,trainingData);
    rprop2.iteration();
View Full Code Here


    // train network 1, no continue
    ResilientPropagation rprop1 = new ResilientPropagation(network1,trainingData);
    rprop1.iteration();
    rprop1.iteration();
    rprop1.iteration();
    rprop1.iteration();
   
    // train network 2, continue
    ResilientPropagation rprop2 = new ResilientPropagation(network2,trainingData);
    rprop2.iteration();
    rprop2.iteration();
View Full Code Here

    rprop1.iteration();
    rprop1.iteration();
   
    // train network 2, continue
    ResilientPropagation rprop2 = new ResilientPropagation(network2,trainingData);
    rprop2.iteration();
    rprop2.iteration();
    TrainingContinuation state = rprop2.pause();
    rprop2 = new ResilientPropagation(network2,trainingData);
    rprop2.resume(state);
    rprop2.iteration();
View Full Code Here

    rprop1.iteration();
   
    // train network 2, continue
    ResilientPropagation rprop2 = new ResilientPropagation(network2,trainingData);
    rprop2.iteration();
    rprop2.iteration();
    TrainingContinuation state = rprop2.pause();
    rprop2 = new ResilientPropagation(network2,trainingData);
    rprop2.resume(state);
    rprop2.iteration();
    rprop2.iteration();
View Full Code Here

    rprop2.iteration();
    rprop2.iteration();
    TrainingContinuation state = rprop2.pause();
    rprop2 = new ResilientPropagation(network2,trainingData);
    rprop2.resume(state);
    rprop2.iteration();
    rprop2.iteration();
   
    // verify weights are the same
    double[] weights1 = NetworkCODEC.networkToArray(network1);
    double[] weights2 = NetworkCODEC.networkToArray(network2);
View Full Code Here

    rprop2.iteration();
    TrainingContinuation state = rprop2.pause();
    rprop2 = new ResilientPropagation(network2,trainingData);
    rprop2.resume(state);
    rprop2.iteration();
    rprop2.iteration();
   
    // verify weights are the same
    double[] weights1 = NetworkCODEC.networkToArray(network1);
    double[] weights2 = NetworkCODEC.networkToArray(network2);
   
View Full Code Here

    //randomizer.randomize(network);
    System.out.println(network.dumpWeights());
    MLTrain rprop = new ResilientPropagation(network, trainingData);
    int iteration = 0;
    do {
      rprop.iteration();
      System.out.println(rprop.getError());
      iteration++;
    } while( iteration<5000 && rprop.getError()>0.01);
    System.out.println(iteration);
    Assert.assertTrue(iteration<40);
View Full Code Here

    elmanPattern.addHiddenLayer(hidden);
    elmanPattern.setOutputNeurons(ideal);
    BasicNetwork network = (BasicNetwork)elmanPattern.generate();
    MLDataSet training = RandomTrainingFactory.generate(1000, 5, network.getInputCount(), network.getOutputCount(), -1, 1);
    ResilientPropagation prop = new ResilientPropagation(network,training);
    prop.iteration();
    prop.iteration();   
  }
 
  public void performJordanTest(int input, int hidden, int ideal)
  {
View Full Code Here

    elmanPattern.setOutputNeurons(ideal);
    BasicNetwork network = (BasicNetwork)elmanPattern.generate();
    MLDataSet training = RandomTrainingFactory.generate(1000, 5, network.getInputCount(), network.getOutputCount(), -1, 1);
    ResilientPropagation prop = new ResilientPropagation(network,training);
    prop.iteration();
    prop.iteration();   
  }
 
  public void performJordanTest(int input, int hidden, int ideal)
  {
    // we are really just making sure no array out of bounds errors occur
View Full Code Here

    jordanPattern.addHiddenLayer(hidden);
    jordanPattern.setOutputNeurons(ideal);
    BasicNetwork network = (BasicNetwork)jordanPattern.generate();
    MLDataSet training = RandomTrainingFactory.generate(1000, 5, network.getInputCount(), network.getOutputCount(), -1, 1);
    ResilientPropagation prop = new ResilientPropagation(network,training);
    prop.iteration();
    prop.iteration();   
  }
 
  public void testElman() 
  {   
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.