Package weka.filters.supervised.attribute

Examples of weka.filters.supervised.attribute.NominalToBinary


     * by a pseudo-class variable that is used by LogitBoost.
     */
    protected Instances getNumericData(Instances train) throws Exception{
 
  Instances filteredData = new Instances(train)
  m_nominalToBinary = new NominalToBinary();     
  m_nominalToBinary.setInputFormat(filteredData);
  filteredData = Filter.useFilter(filteredData, m_nominalToBinary)

  return super.getNumericData(filteredData);
    }
View Full Code Here


    m_replaceMissing = new ReplaceMissingValues();
    m_replaceMissing.setInputFormat(m_instances);
    m_instances = Filter.useFilter(m_instances, m_replaceMissing);

    m_nominalToBinary = new NominalToBinary();
    m_nominalToBinary.setInputFormat(m_instances);
    m_instances = Filter.useFilter(m_instances, m_nominalToBinary);

    m_removeUseless = new RemoveUseless();
    m_removeUseless.setInputFormat(m_instances);
View Full Code Here

      data.deleteWithMissingClass();
    }

    // Preprocess instances
    if (!m_checksTurnedOff) {
      m_TransformFilter = new NominalToBinary();
      m_TransformFilter.setInputFormat(data);
      data = Filter.useFilter(data, m_TransformFilter);
      m_MissingFilter = new ReplaceMissingValues();
      m_MissingFilter.setInputFormat(data);
      data = Filter.useFilter(data, m_MissingFilter);
View Full Code Here

   * by a pseudo-class variable that is used by LogitBoost.
   */
  protected Instances getNumericData(Instances train) throws Exception{
 
    Instances filteredData = new Instances(train)
    m_nominalToBinary = new NominalToBinary();     
    m_nominalToBinary.setInputFormat(filteredData);
    filteredData = Filter.useFilter(filteredData, m_nominalToBinary)

    return super.getNumericData(filteredData);
  }
View Full Code Here

      data.deleteWithMissingClass();
    }

    // Preprocess instances
    if (!m_checksTurnedOff) {
      m_TransformFilter = new NominalToBinary();
      m_TransformFilter.setInputFormat(data);
      data = Filter.useFilter(data, m_TransformFilter);
      m_MissingFilter = new ReplaceMissingValues();
      m_MissingFilter.setInputFormat(data);
      data = Filter.useFilter(data, m_MissingFilter);
View Full Code Here

    m_replaceMissing = new ReplaceMissingValues();
    m_replaceMissing.setInputFormat(m_instances);
    m_instances = Filter.useFilter(m_instances, m_replaceMissing);

    m_nominalToBinary = new NominalToBinary();
    m_nominalToBinary.setInputFormat(m_instances);
    m_instances = Filter.useFilter(m_instances, m_nominalToBinary);

    m_removeUseless = new RemoveUseless();
    m_removeUseless.setInputFormat(m_instances);
View Full Code Here

    m_replaceMissing.setInputFormat(filteredData)
    filteredData = Filter.useFilter(filteredData, m_replaceMissing)
 
    //possibly convert nominal attributes globally
    if (m_convertNominal) {     
      m_nominalToBinary = new NominalToBinary();
      m_nominalToBinary.setInputFormat(filteredData)
      filteredData = Filter.useFilter(filteredData, m_nominalToBinary);
    }

    int minNumInstances = 2;
View Full Code Here

TOP

Related Classes of weka.filters.supervised.attribute.NominalToBinary

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.