Package weka.classifiers.functions

Examples of weka.classifiers.functions.LinearRegression


   */
  public GridSearch() {
    super();
   
    // classifier
    m_Classifier = new LinearRegression();
    ((LinearRegression) m_Classifier).setAttributeSelectionMethod(new SelectedTag(LinearRegression.SELECTION_NONE, LinearRegression.TAGS_SELECTION));
    ((LinearRegression) m_Classifier).setEliminateColinearAttributes(false);
   
    // filter
    m_Filter = new PLSFilter();
View Full Code Here


      ((Remove)m_filter).setAttributeIndicesArray(attributeList2);
      m_filter.setInputFormat(m_training);
     
      Instances temp2 = Filter.useFilter(m_training, m_filter);
      temp2.setClassIndex(classind);
      m_classObject = new LinearRegression();
      m_classObject.buildClassifier(temp2);
    }
View Full Code Here

   * Returns default capabilities of the classifier, i.e., of LinearRegression.
   *
   * @return      the capabilities of this classifier
   */
  public Capabilities getCapabilities() {
    return new LinearRegression().getCapabilities();
  }
View Full Code Here

    reducedInst = Filter.useFilter(reducedInst, attributeFilter);
   
    // build a linear regression for the training data using the
    // tested attributes
    LinearRegression temp = new LinearRegression();
    temp.buildClassifier(reducedInst);

    double [] lmCoeffs = temp.coefficients();
    double [] coeffs = new double [m_instances.numAttributes()];

    for (int i = 0; i < lmCoeffs.length - 1; i++) {
      if (indices[i] != m_classIndex) {
  coeffs[indices[i]] = lmCoeffs[i];
View Full Code Here

   * Returns default capabilities of the classifier, i.e., of LinearRegression.
   *
   * @return      the capabilities of this classifier
   */
  public Capabilities getCapabilities() {
    return new LinearRegression().getCapabilities();
  }
View Full Code Here

  {
    for (Dataset dataset : datasets)
    {
      // Set parameters
      int folds = 10;
      Classifier baseClassifier = new LinearRegression();
     
      // Set up the random number generator
        long seed = new Date().getTime();     
      Random random = new Random(seed)
       
View Full Code Here

  {
    for (Dataset dataset : datasets)
    {
      // Set parameters
      int folds = 10;
      Classifier baseClassifier = new LinearRegression();
     
      // Set up the random number generator
        long seed = new Date().getTime();     
      Random random = new Random(seed)
       
View Full Code Here

      ((Remove)m_filter).setAttributeIndicesArray(attributeList2);
      m_filter.setInputFormat(m_training);
     
      Instances temp2 = Filter.useFilter(m_training, m_filter);
      temp2.setClassIndex(classind);
      m_classObject = new LinearRegression();
      m_classObject.buildClassifier(temp2);
    }
View Full Code Here

   */
  public GridSearch() {
    super();
   
    // classifier
    m_Classifier = new LinearRegression();
    ((LinearRegression) m_Classifier).setAttributeSelectionMethod(new SelectedTag(LinearRegression.SELECTION_NONE, LinearRegression.TAGS_SELECTION));
    ((LinearRegression) m_Classifier).setEliminateColinearAttributes(false);
   
    // filter
    m_Filter = new PLSFilter();
View Full Code Here

   * Returns default capabilities of the classifier, i.e., of LinearRegression.
   *
   * @return      the capabilities of this classifier
   */
  public Capabilities getCapabilities() {
    return new LinearRegression().getCapabilities();
  }
View Full Code Here

TOP

Related Classes of weka.classifiers.functions.LinearRegression

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.