*
* @param instances the data to train the classifier with
* @throws Exception if classifier can't be built successfully
*/
public void buildClassifier( Instances instances ) throws Exception {
ModelSelection modSelection = new HDIGModelSelection( m_minNumObj, instances );
if( !m_reducedErrorPruning ) {
m_root = new C45PruneableClassifierTree( modSelection, !m_unpruned, m_CF, m_subtreeRaising, !m_noCleanup );
} else {
m_root = new PruneableClassifierTree( modSelection, !m_unpruned, m_numFolds, !m_noCleanup, m_Seed );