Class for a Naive Bayes classifier using estimator classes. This is the updateable version of NaiveBayes.
This classifier will use a default precision of 0.1 for numeric attributes when buildClassifier is called with zero training instances.
For more information on Naive Bayes classifiers, see
George H. John, Pat Langley: Estimating Continuous Distributions in Bayesian Classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, 338-345, 1995.
BibTeX:
@inproceedings{John1995, address = {San Mateo}, author = {George H. John and Pat Langley}, booktitle = {Eleventh Conference on Uncertainty in Artificial Intelligence}, pages = {338-345}, publisher = {Morgan Kaufmann}, title = {Estimating Continuous Distributions in Bayesian Classifiers}, year = {1995} }
Valid options are:
-K Use kernel density estimator rather than normal distribution for numeric attributes
-D Use supervised discretization to process numeric attributes
-O Display model in old format (good when there are many classes)
@author Len Trigg (trigg@cs.waikato.ac.nz)
@author Eibe Frank (eibe@cs.waikato.ac.nz)
@version $Revision: 1.11 $