if(artSize==0) artSize=1;//atleast add one random example
computeStats(data);//Compute training data stats for creating artificial examples
//initialize new committee
m_Committee = new Vector();
Classifier newClassifier = m_Classifier;
newClassifier.buildClassifier(divData);
m_Committee.add(newClassifier);
double eComm = computeError(divData);//compute ensemble error
if(m_Debug) System.out.println("Initialize:\tClassifier "+i+" added to ensemble. Ensemble error = "+eComm);
//repeat till desired committee size is reached OR the max number of iterations is exceeded
while(i<m_DesiredSize && numTrials<m_NumIterations){
//Generate artificial training examples
artData = generateArtificialData(artSize, data);
//Label artificial examples
labelData(artData);
addInstances(divData, artData);//Add new artificial data
//Build new classifier
Classifier tmp[] = Classifier.makeCopies(m_Classifier,1);
newClassifier = tmp[0];
newClassifier.buildClassifier(divData);
//Remove all the artificial data
removeInstances(divData, artSize);