Package statechum

Examples of statechum.Trace


  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-a->C / B-b->C-a-#D / B-c-#D","testUpdateMarkovSideways1c",config, converter);
    MarkovUniversalLearner m = new MarkovUniversalLearner(2);
    m.predictTransitionsAndUpdateMarkov(graph,true,false);
    Assert.assertTrue(m.getMarkov(false).isEmpty());Assert.assertEquals(7,m.getMarkov(true).size());
    Assert.assertEquals(MarkovOutcome.failure,m.getMarkov(true).get(new Trace(Arrays.asList(new Label[]{lblA,lblA}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(true).get(new Trace(Arrays.asList(new Label[]{lblA,lblB}),true)));
    Assert.assertEquals(MarkovOutcome.negative,m.getMarkov(true).get(new Trace(Arrays.asList(new Label[]{lblA,lblC}),true)));
    Assert.assertEquals(MarkovOutcome.negative,m.getMarkov(true).get(new Trace(Arrays.asList(new Label[]{lblB,lblA}),true)));

    Assert.assertEquals(MarkovOutcome.failure,m.getMarkov(true).get(new Trace(Arrays.asList(new Label[]{lblA}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(true).get(new Trace(Arrays.asList(new Label[]{lblB}),true)));
    Assert.assertEquals(MarkovOutcome.negative,m.getMarkov(true).get(new Trace(Arrays.asList(new Label[]{lblC}),true)));
   
    Set<List<Label>> plusStrings = buildSet(new String[][] {},config,converter), minusStrings = buildSet(new String[][] { new String[]{"a","a","a"},new String[]{"a","b","a"},new String[]{"a","c"} },config,converter);
    MarkovUniversalLearner another = new MarkovUniversalLearner(2);
    another.createMarkovLearner(plusStrings, minusStrings, false);

    Assert.assertTrue(another.getMarkov(false).isEmpty());Assert.assertEquals(7,another.getMarkov(true).size());
    Assert.assertEquals(MarkovOutcome.failure,another.getMarkov(true).get(new Trace(Arrays.asList(new Label[]{lblA,lblA}),true)));
    Assert.assertEquals(MarkovOutcome.positive,another.getMarkov(true).get(new Trace(Arrays.asList(new Label[]{lblA,lblB}),true)));
    Assert.assertEquals(MarkovOutcome.negative,another.getMarkov(true).get(new Trace(Arrays.asList(new Label[]{lblA,lblC}),true)));
    Assert.assertEquals(MarkovOutcome.negative,another.getMarkov(true).get(new Trace(Arrays.asList(new Label[]{lblB,lblA}),true)));

    Assert.assertEquals(MarkovOutcome.failure,another.getMarkov(true).get(new Trace(Arrays.asList(new Label[]{lblA}),true)));
    Assert.assertEquals(MarkovOutcome.positive,another.getMarkov(true).get(new Trace(Arrays.asList(new Label[]{lblB}),true)));
    Assert.assertEquals(MarkovOutcome.negative,another.getMarkov(true).get(new Trace(Arrays.asList(new Label[]{lblC}),true)));
  }
View Full Code Here


    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-c->C / B-b-#D","testUpdateMarkovSideways2",config, converter);
    MarkovUniversalLearner m = new MarkovUniversalLearner(2);
    m.predictTransitionsAndUpdateMarkov(graph,false,true);
    Assert.assertTrue(m.getMarkov(true).isEmpty());
    Assert.assertEquals(3,m.getMarkov(false).size());
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblA,lblA}),true)));
    Assert.assertEquals(MarkovOutcome.negative,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblC,lblB}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblC,lblC}),true)));
  }
View Full Code Here

    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovUniversalLearner m = new MarkovUniversalLearner(2);
    m.predictTransitionsAndUpdateMarkov(graph,false,true);
    Assert.assertTrue(m.getMarkov(true).isEmpty());
    Assert.assertEquals(9,m.getMarkov(false).size());
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblA,lblA}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblA,lblC}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblC,lblA}),true)));
   
    Assert.assertEquals(MarkovOutcome.negative,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblB,lblU}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblB,lblB}),true)));
   
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblC,lblC}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblU,lblU}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblC,lblU}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblU,lblC}),true)));
  }
View Full Code Here

    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovUniversalLearner m = new MarkovUniversalLearner(3);
    m.predictTransitionsAndUpdateMarkov(graph,false,true);
    Assert.assertTrue(m.getMarkov(true).isEmpty());
    Assert.assertEquals(6,m.getMarkov(false).size());
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblA,lblB,lblC}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblA,lblB,lblA}),true)));
   
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblC,lblU,lblC}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblC,lblU,lblA}),true)));
   
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblC,lblC,lblC}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblC,lblC,lblA}),true)));
  }
View Full Code Here

    m.predictTransitionsAndUpdateMarkov(graph,false,true);
    Assert.assertTrue(m.getMarkov(true).isEmpty());
   
    Assert.assertEquals(8,m.getMarkov(false).size());
   
    Assert.assertEquals(MarkovOutcome.failure,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblB,lblU}),true)));
   
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblA,lblA}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblC,lblA}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblA,lblC}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblC,lblC}),true)));
   
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblU,lblB}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblB,lblB}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblU,lblU}),true)));
  }
View Full Code Here

    trainingGraphForClosures = FsmParser.buildLearnerGraph("A-a->B-b->C-a->D-b->E / C-c->C / B-a->C / D-a->E","testComputeClosure",config, converter);
  }
 
  @Test
  public void testGetChunks1() {
    List<Trace> l = MarkovModel.splitTrace(new Trace(Arrays.asList(new Label[]{}),true),1);
    Assert.assertTrue(l.isEmpty());
  }
View Full Code Here

    Assert.assertTrue(l.isEmpty());
  }

  @Test
  public void testGetChunks2a() {
    List<Trace> l = MarkovModel.splitTrace(new Trace(Arrays.asList(new Label[]{lblA,lblB,lblC}),true),4);
    Assert.assertTrue(l.isEmpty());
  }
View Full Code Here

    Assert.assertTrue(l.isEmpty());
  }

  @Test
  public void testGetChunks2b() {
    List<Trace> l = MarkovModel.splitTrace(new Trace(Arrays.asList(new Label[]{lblA,lblB,lblC}),true),10);
    Assert.assertTrue(l.isEmpty());
  }
View Full Code Here

    Assert.assertTrue(l.isEmpty());
  }

  @Test
  public void testGetChunks3() {
    List<Trace> l = MarkovModel.splitTrace(new Trace(Arrays.asList(new Label[]{lblA,lblB,lblC}),true),1);
    Assert.assertEquals(3,l.size());
    Assert.assertEquals(new Trace(Arrays.asList(new Label[]{lblA}),true),l.get(0));
    Assert.assertEquals(new Trace(Arrays.asList(new Label[]{lblB}),true),l.get(1));
    Assert.assertEquals(new Trace(Arrays.asList(new Label[]{lblC}),true),l.get(2));
  }
View Full Code Here

    Assert.assertEquals(new Trace(Arrays.asList(new Label[]{lblC}),true),l.get(2));
  }

  @Test
  public void testGetChunks4() {
    List<Trace> l = MarkovModel.splitTrace(new Trace(Arrays.asList(new Label[]{lblA,lblB,lblC}),true),2);
    Assert.assertEquals(2,l.size());
    Assert.assertEquals(new Trace(Arrays.asList(new Label[]{lblA,lblB}),true),l.get(0));
    Assert.assertEquals(new Trace(Arrays.asList(new Label[]{lblB,lblC}),true),l.get(1));
  }
View Full Code Here

TOP

Related Classes of statechum.Trace

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.