Package statechum

Examples of statechum.Trace


    Assert.assertEquals(new Trace(Arrays.asList(new Label[]{lblB,lblC}),true),l.get(1));
  }

  @Test
  public void testGetChunks5() {
    List<Trace> l = MarkovUniversalLearner.get_chunks(new Trace(Arrays.asList(new Label[]{lblA,lblB,lblC}),true),3);
    Assert.assertEquals(1,l.size());
    Assert.assertEquals(new Trace(Arrays.asList(new Label[]{lblA,lblB,lblC}),true),l.get(0));
  }
View Full Code Here


  {
    MarkovUniversalLearner m = new MarkovUniversalLearner(2);
    Set<List<Label>> plusStrings = buildSet(new String[][] { new String[]{"a","b","c"}, new String[]{"a","b"}, new String[]{"a","d","c"}},config,converter), minusStrings = buildSet(new String[][] { new String[]{"a","b","c","d"}, new String[]{"a","u"} },config,converter);
    Map<Trace, MarkovOutcome> matrix = m.createMarkovLearner(plusStrings, minusStrings,false);
    Assert.assertEquals(11,matrix.size());
    Assert.assertSame(MarkovOutcome.negative, matrix.get(new Trace(Arrays.asList(new Label[]{lblA,lblU}),true)));

    Assert.assertSame(MarkovOutcome.positive, matrix.get(new Trace(Arrays.asList(new Label[]{lblD,lblC}),true)));

    Assert.assertSame(MarkovOutcome.positive, matrix.get(new Trace(Arrays.asList(new Label[]{lblB,lblC}),true)));

    Assert.assertSame(MarkovOutcome.positive, matrix.get(new Trace(Arrays.asList(new Label[]{lblA,lblB}),true)));

    Assert.assertSame(MarkovOutcome.negative, matrix.get(new Trace(Arrays.asList(new Label[]{lblC,lblD}),true)));

    Assert.assertSame(MarkovOutcome.positive, matrix.get(new Trace(Arrays.asList(new Label[]{lblA,lblD}),true)));

    Assert.assertSame(MarkovOutcome.positive, matrix.get(new Trace(Arrays.asList(new Label[]{lblA}),true)));
   
    Assert.assertSame(MarkovOutcome.positive, matrix.get(new Trace(Arrays.asList(new Label[]{lblB}),true)));
   
    Assert.assertSame(MarkovOutcome.positive, matrix.get(new Trace(Arrays.asList(new Label[]{lblC}),true)));
   
    Assert.assertSame(MarkovOutcome.failure, matrix.get(new Trace(Arrays.asList(new Label[]{lblD}),true)));
   
    Assert.assertSame(MarkovOutcome.negative, matrix.get(new Trace(Arrays.asList(new Label[]{lblU}),true)));
 
View Full Code Here

    MarkovUniversalLearner m = new MarkovUniversalLearner(2);
    Set<List<Label>> plusStrings = buildSet(new String[][] { new String[]{"a","u"} },config,converter), minusStrings = new HashSet<List<Label>>();
    Map<Trace, MarkovOutcome> matrix = m.createMarkovLearner(plusStrings, minusStrings,false);
    Assert.assertEquals(3,matrix.size());
   
    Assert.assertSame(MarkovOutcome.positive, matrix.get(new Trace(Arrays.asList(new Label[]{lblA,lblU}),true)));

    Assert.assertSame(MarkovOutcome.positive, matrix.get(new Trace(Arrays.asList(new Label[]{lblA}),true)));

    Assert.assertSame(MarkovOutcome.positive, matrix.get(new Trace(Arrays.asList(new Label[]{lblU}),true)));
  }
View Full Code Here

    MarkovUniversalLearner m = new MarkovUniversalLearner(2);
    Set<List<Label>> plusStrings = new HashSet<List<Label>>(), minusStrings = buildSet(new String[][] { new String[]{"a","u"} },config,converter);
    Map<Trace, MarkovOutcome> matrix = m.createMarkovLearner(plusStrings, minusStrings,false);
    Assert.assertEquals(3,matrix.size());

    Assert.assertSame(MarkovOutcome.negative, matrix.get(new Trace(Arrays.asList(new Label[]{lblA,lblU}),true)));

    Assert.assertSame(MarkovOutcome.positive, matrix.get(new Trace(Arrays.asList(new Label[]{lblA}),true)));

    Assert.assertSame(MarkovOutcome.negative, matrix.get(new Trace(Arrays.asList(new Label[]{lblU}),true)));
  }
View Full Code Here

    MarkovUniversalLearner m = new MarkovUniversalLearner(3);
    Set<List<Label>> plusStrings = new HashSet<List<Label>>(), minusStrings = buildSet(new String[][] { new String[]{"a","u"} },config,converter);
    Map<Trace, MarkovOutcome> matrix = m.createMarkovLearner(plusStrings, minusStrings,false);
    Assert.assertEquals(3,matrix.size());

    Assert.assertSame(MarkovOutcome.negative, matrix.get(new Trace(Arrays.asList(new Label[]{lblA,lblU}),true)));

    Assert.assertSame(MarkovOutcome.positive, matrix.get(new Trace(Arrays.asList(new Label[]{lblA}),true)));

    Assert.assertSame(MarkovOutcome.negative, matrix.get(new Trace(Arrays.asList(new Label[]{lblU}),true)));
  }
View Full Code Here

    MarkovUniversalLearner m = new MarkovUniversalLearner(2);
    Set<List<Label>> plusStrings = new HashSet<List<Label>>(), minusStrings = buildSet(new String[][] { new String[]{"u"} },config,converter);
    Map<Trace, MarkovOutcome> matrix = m.createMarkovLearner(plusStrings, minusStrings,false);
    Assert.assertEquals(1,matrix.size());

    Assert.assertSame(MarkovOutcome.negative, matrix.get(new Trace(Arrays.asList(new Label[]{lblU}),true)));
  }
View Full Code Here

    final MarkovUniversalLearner m = new MarkovUniversalLearner(2);
    final Set<List<Label>> plusStrings = new HashSet<List<Label>>(), minusStrings = buildSet(new String[][] { new String[]{},new String[]{"a","u"} },config,converter);
    Map<Trace, MarkovOutcome> matrix = m.createMarkovLearner(plusStrings, minusStrings,false);
    Assert.assertEquals(3,matrix.size());
   
    Assert.assertSame(MarkovOutcome.negative, matrix.get(new Trace(Arrays.asList(new Label[]{lblA,lblU}),true)));

    Assert.assertSame(MarkovOutcome.positive, matrix.get(new Trace(Arrays.asList(new Label[]{lblA}),true)));

    Assert.assertSame(MarkovOutcome.negative, matrix.get(new Trace(Arrays.asList(new Label[]{lblU}),true)));
  }
View Full Code Here

  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-a->C / B-b->C","testUpdateMarkovSideways1",config, converter);
    MarkovUniversalLearner m = new MarkovUniversalLearner(2);
    m.predictTransitionsAndUpdateMarkov(graph,false,true);
    Assert.assertTrue(m.getMarkov(true).isEmpty());Assert.assertEquals(4,m.getMarkov(false).size());
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblA,lblA}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblA,lblB}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblB,lblA}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblB,lblB}),true)));
  }
View Full Code Here

  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-a->C / B-b->C","testUpdateMarkovSideways1",config, converter);
    MarkovUniversalLearner m = new MarkovUniversalLearner(2);
    m.predictTransitionsAndUpdateMarkov(graph,false,false);
    Assert.assertTrue(m.getMarkov(true).isEmpty());Assert.assertEquals(6,m.getMarkov(false).size());
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblA,lblA}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblA,lblB}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblB,lblA}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblB,lblB}),true)));

    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblA}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblB}),true)));
  }
View Full Code Here

  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-a->C / B-b->C-a-#D / B-c-#D","testUpdateMarkovSideways1c",config, converter);
    MarkovUniversalLearner m = new MarkovUniversalLearner(2);
    m.predictTransitionsAndUpdateMarkov(graph,false,false);
    Assert.assertTrue(m.getMarkov(true).isEmpty());Assert.assertEquals(9,m.getMarkov(false).size());
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblA,lblA}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblA,lblB}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblB,lblA}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblB,lblB}),true)));
    Assert.assertEquals(MarkovOutcome.negative,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblA,lblC}),true)));
    Assert.assertEquals(MarkovOutcome.negative,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblB,lblC}),true)));

    Assert.assertEquals(MarkovOutcome.failure,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblA}),true)));
    Assert.assertEquals(MarkovOutcome.positive,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblB}),true)));
    Assert.assertEquals(MarkovOutcome.negative,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblC}),true)));
  }
View Full Code Here

TOP

Related Classes of statechum.Trace

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.