Examples of Random


Examples of java.util.Random

        // create new train/test sources
        if (splitPercentage > 0) {
          testSetPresent = true;
          Instances tmpInst = trainSource.getDataSet(actualClassIndex);
          if (!preserveOrder)
            tmpInst.randomize(new Random(seed));
          int trainSize =
            (int) Math.round(tmpInst.numInstances() * splitPercentage / 100);
          int testSize  = tmpInst.numInstances() - trainSize;
          Instances trainInst = new Instances(tmpInst, 0, trainSize);
          Instances testInst  = new Instances(tmpInst, trainSize, testSize);
          trainSource = new DataSource(trainInst);
          testSource  = new DataSource(testInst);
          template = test = testSource.getStructure();
          if (classIndex != -1) {
            test.setClassIndex(classIndex - 1);
          } else {
            if ( (test.classIndex() == -1) || (classIndexString.length() != 0) )
              test.setClassIndex(test.numAttributes() - 1);
          }
          actualClassIndex = test.classIndex();
        }
      }
      if (trainSetPresent) {
        template = train = trainSource.getStructure();
        if (classIndex != -1) {
          train.setClassIndex(classIndex - 1);
        } else {
          if ( (train.classIndex() == -1) || (classIndexString.length() != 0) )
            train.setClassIndex(train.numAttributes() - 1);
        }
        actualClassIndex = train.classIndex();
        if (!(classifier instanceof weka.classifiers.misc.InputMappedClassifier)) {
          if ((testSetPresent) && !test.equalHeaders(train)) {
            throw new IllegalArgumentException("Train and test file not compatible!\n" + test.equalHeadersMsg(train));
          }
        }
      }
      if (template == null) {
        throw new Exception("No actual dataset provided to use as template");
      }
      costMatrix = handleCostOption(
          Utils.getOption('m', options), template.numClasses());

      classStatistics = Utils.getFlag('i', options);
      noOutput = Utils.getFlag('o', options);
      trainStatistics = !Utils.getFlag('v', options);
      printComplexityStatistics = Utils.getFlag('k', options);
      printMargins = Utils.getFlag('r', options);
      printGraph = Utils.getFlag('g', options);
      sourceClass = Utils.getOption('z', options);
      printSource = (sourceClass.length() != 0);
      thresholdFile = Utils.getOption("threshold-file", options);
      thresholdLabel = Utils.getOption("threshold-label", options);

      String classifications = Utils.getOption("classifications", options);
      String classificationsOld = Utils.getOption("p", options);
      if (classifications.length() > 0) {
        noOutput = true;
        classificationOutput = AbstractOutput.fromCommandline(classifications);
        classificationOutput.setHeader(template);
      }
      // backwards compatible with old "-p range" and "-distribution" options
      else if (classificationsOld.length() > 0) {
        noOutput = true;
        classificationOutput = new PlainText();
        classificationOutput.setHeader(template);
        if (!classificationsOld.equals("0"))
          classificationOutput.setAttributes(classificationsOld);
        classificationOutput.setOutputDistribution(Utils.getFlag("distribution", options));
      }
      // -distribution flag needs -p option
      else {
        if (Utils.getFlag("distribution", options))
          throw new Exception("Cannot print distribution without '-p' option!");
      }

      // if no training file given, we don't have any priors
      if ( (!trainSetPresent) && (printComplexityStatistics) )
        throw new Exception("Cannot print complexity statistics ('-k') without training file ('-t')!");

      // If a model file is given, we can't process
      // scheme-specific options
      if (objectInputFileName.length() != 0) {
        Utils.checkForRemainingOptions(options);
      } else {

        // Set options for classifier
        if (classifier instanceof OptionHandler) {
          for (int i = 0; i < options.length; i++) {
            if (options[i].length() != 0) {
              if (schemeOptionsText == null) {
                schemeOptionsText = new StringBuffer();
              }
              if (options[i].indexOf(' ') != -1) {
                schemeOptionsText.append('"' + options[i] + "\" ");
              } else {
                schemeOptionsText.append(options[i] + " ");
              }
            }
          }
          ((OptionHandler)classifier).setOptions(options);
        }
      }

      Utils.checkForRemainingOptions(options);
    } catch (Exception e) {
      throw new Exception("\nWeka exception: " + e.getMessage()
          + makeOptionString(classifier, false));
    }

    if (objectInputFileName.length() != 0) {
      // Load classifier from file
      if (objectInputStream != null) {
        classifier = (Classifier) objectInputStream.readObject();
        // try and read a header (if present)
        Instances savedStructure = null;
        try {
          savedStructure = (Instances) objectInputStream.readObject();
        } catch (Exception ex) {
          // don't make a fuss
        }
        if (savedStructure != null) {
          // test for compatibility with template
          if (!template.equalHeaders(savedStructure)) {
            throw new Exception("training and test set are not compatible\n" + template.equalHeadersMsg(savedStructure));
          }
        }
        objectInputStream.close();
      }
      else if (xmlInputStream != null) {
        // whether KOML is available has already been checked (objectInputStream would null otherwise)!
        classifier = (Classifier) KOML.read(xmlInputStream);
        xmlInputStream.close();
      }
    }
   
    // Setup up evaluation objects
    Evaluation trainingEvaluation = new Evaluation(new Instances(template, 0), costMatrix);
    Evaluation testingEvaluation = new Evaluation(new Instances(template, 0), costMatrix);
    if (classifier instanceof weka.classifiers.misc.InputMappedClassifier) {
      Instances mappedClassifierHeader =
        ((weka.classifiers.misc.InputMappedClassifier)classifier).
          getModelHeader(new Instances(template, 0));
           
      trainingEvaluation = new Evaluation(new Instances(mappedClassifierHeader, 0), costMatrix);
      testingEvaluation = new Evaluation(new Instances(mappedClassifierHeader, 0), costMatrix);
    }

    // disable use of priors if no training file given
    if (!trainSetPresent)
      testingEvaluation.useNoPriors();

    // backup of fully setup classifier for cross-validation
    classifierBackup = AbstractClassifier.makeCopy(classifier);

    // Build the classifier if no object file provided
    if ((classifier instanceof UpdateableClassifier) &&
        (testSetPresent || noCrossValidation) &&
        (costMatrix == null) &&
        (trainSetPresent)) {
      // Build classifier incrementally
      trainingEvaluation.setPriors(train);
      testingEvaluation.setPriors(train);
      trainTimeStart = System.currentTimeMillis();
      if (objectInputFileName.length() == 0) {
        classifier.buildClassifier(train);
      }
      Instance trainInst;
      while (trainSource.hasMoreElements(train)) {
        trainInst = trainSource.nextElement(train);
        trainingEvaluation.updatePriors(trainInst);
        testingEvaluation.updatePriors(trainInst);
        ((UpdateableClassifier)classifier).updateClassifier(trainInst);
      }
      trainTimeElapsed = System.currentTimeMillis() - trainTimeStart;
    } else if (objectInputFileName.length() == 0) {
      // Build classifier in one go
      tempTrain = trainSource.getDataSet(actualClassIndex);
     
      if (classifier instanceof weka.classifiers.misc.InputMappedClassifier &&
          !trainingEvaluation.getHeader().equalHeaders(tempTrain)) {
        // we need to make a new dataset that maps the training instances to
        // the structure expected by the mapped classifier - this is only
        // to ensure that the structure and priors computed by the *testing*
        // evaluation object is correct with respect to the mapped classifier
        Instances mappedClassifierDataset =
          ((weka.classifiers.misc.InputMappedClassifier)classifier).
            getModelHeader(new Instances(template, 0));
        for (int zz = 0; zz < tempTrain.numInstances(); zz++) {
          Instance mapped = ((weka.classifiers.misc.InputMappedClassifier)classifier).
            constructMappedInstance(tempTrain.instance(zz));
          mappedClassifierDataset.add(mapped);
        }
        tempTrain = mappedClassifierDataset;
      }
     
      trainingEvaluation.setPriors(tempTrain);
      testingEvaluation.setPriors(tempTrain);
      trainTimeStart = System.currentTimeMillis();
      classifier.buildClassifier(tempTrain);
      trainTimeElapsed = System.currentTimeMillis() - trainTimeStart;
    }

    // backup of fully trained classifier for printing the classifications
    if (classificationOutput != null) {
      classifierClassifications = AbstractClassifier.makeCopy(classifier);
      if (classifier instanceof weka.classifiers.misc.InputMappedClassifier) {
        classificationOutput.setHeader(trainingEvaluation.getHeader());
      }
    }

    // Save the classifier if an object output file is provided
    if (objectOutputFileName.length() != 0) {
      OutputStream os = new FileOutputStream(objectOutputFileName);
      // binary
      if (!(objectOutputFileName.endsWith(".xml") || (objectOutputFileName.endsWith(".koml") && KOML.isPresent()))) {
        if (objectOutputFileName.endsWith(".gz")) {
          os = new GZIPOutputStream(os);
        }
        ObjectOutputStream objectOutputStream = new ObjectOutputStream(os);
        objectOutputStream.writeObject(classifier);
        if (template != null) {
          objectOutputStream.writeObject(template);
        }
        objectOutputStream.flush();
        objectOutputStream.close();
      }
      // KOML/XML
      else {
        BufferedOutputStream xmlOutputStream = new BufferedOutputStream(os);
        if (objectOutputFileName.endsWith(".xml")) {
          XMLSerialization xmlSerial = new XMLClassifier();
          xmlSerial.write(xmlOutputStream, classifier);
        }
        else
          // whether KOML is present has already been checked
          // if not present -> ".koml" is interpreted as binary - see above
          if (objectOutputFileName.endsWith(".koml")) {
            KOML.write(xmlOutputStream, classifier);
          }
        xmlOutputStream.close();
      }
    }

    // If classifier is drawable output string describing graph
    if ((classifier instanceof Drawable) && (printGraph)){
      return ((Drawable)classifier).graph();
    }

    // Output the classifier as equivalent source
    if ((classifier instanceof Sourcable) && (printSource)){
      return wekaStaticWrapper((Sourcable) classifier, sourceClass);
    }

    // Output model
    if (!(noOutput || printMargins)) {
      if (classifier instanceof OptionHandler) {
        if (schemeOptionsText != null) {
          text.append("\nOptions: "+schemeOptionsText);
          text.append("\n");
        }
      }
      text.append("\n" + classifier.toString() + "\n");
    }

    if (!printMargins && (costMatrix != null)) {
      text.append("\n=== Evaluation Cost Matrix ===\n\n");
      text.append(costMatrix.toString());
    }

    // Output test instance predictions only
    if (classificationOutput != null) {
      DataSource source = testSource;
      predsBuff = new StringBuffer();
      classificationOutput.setBuffer(predsBuff);
      // no test set -> use train set
      if (source == null && noCrossValidation) {
        source = trainSource;
        predsBuff.append("\n=== Predictions on training data ===\n\n");
      } else {
        predsBuff.append("\n=== Predictions on test data ===\n\n");
      }
      if (source != null)
        classificationOutput.print(classifierClassifications, source);
    }

    // Compute error estimate from training data
    if ((trainStatistics) && (trainSetPresent)) {

      if ((classifier instanceof UpdateableClassifier) &&
          (testSetPresent) &&
          (costMatrix == null)) {

        // Classifier was trained incrementally, so we have to
        // reset the source.
        trainSource.reset();

        // Incremental testing
        train = trainSource.getStructure(actualClassIndex);
        testTimeStart = System.currentTimeMillis();
        Instance trainInst;
        while (trainSource.hasMoreElements(train)) {
          trainInst = trainSource.nextElement(train);
          trainingEvaluation.evaluateModelOnce((Classifier)classifier, trainInst);
        }
        testTimeElapsed = System.currentTimeMillis() - testTimeStart;
      } else {
        testTimeStart = System.currentTimeMillis();
        trainingEvaluation.evaluateModel(
            classifier, trainSource.getDataSet(actualClassIndex));
        testTimeElapsed = System.currentTimeMillis() - testTimeStart;
      }

      // Print the results of the training evaluation
      if (printMargins) {
        return trainingEvaluation.toCumulativeMarginDistributionString();
      } else {
        if (classificationOutput == null) {
          text.append("\nTime taken to build model: "
              + Utils.doubleToString(trainTimeElapsed / 1000.0,2)
              + " seconds");

          if (splitPercentage > 0)
            text.append("\nTime taken to test model on training split: ");
          else
            text.append("\nTime taken to test model on training data: ");
          text.append(Utils.doubleToString(testTimeElapsed / 1000.0,2) + " seconds");

          if (splitPercentage > 0)
            text.append(trainingEvaluation.toSummaryString("\n\n=== Error on training"
                  + " split ===\n", printComplexityStatistics));
          else
            text.append(trainingEvaluation.toSummaryString("\n\n=== Error on training"
                  + " data ===\n", printComplexityStatistics));

          if (template.classAttribute().isNominal()) {
            if (classStatistics) {
              text.append("\n\n" + trainingEvaluation.toClassDetailsString());
            }
            if (!noCrossValidation)
              text.append("\n\n" + trainingEvaluation.toMatrixString());
          }
        }
      }
    }

    // Compute proper error estimates
    if (testSource != null) {
      // Testing is on the supplied test data
      testSource.reset();
      test = testSource.getStructure(test.classIndex());
      Instance testInst;
      while (testSource.hasMoreElements(test)) {       
        testInst = testSource.nextElement(test);
        testingEvaluation.evaluateModelOnceAndRecordPrediction(
            (Classifier)classifier, testInst);
      }

      if (splitPercentage > 0) {
        if (classificationOutput == null) {
          text.append("\n\n" + testingEvaluation.
              toSummaryString("=== Error on test split ===\n",
                  printComplexityStatistics));
        }
      } else {
        if (classificationOutput == null) {
          text.append("\n\n" + testingEvaluation.
              toSummaryString("=== Error on test data ===\n",
                  printComplexityStatistics));
        }
      }

    } else if (trainSource != null) {
      if (!noCrossValidation) {
        // Testing is via cross-validation on training data
        Random random = new Random(seed);
        // use untrained (!) classifier for cross-validation
        classifier = AbstractClassifier.makeCopy(classifierBackup);
        if (classificationOutput == null) {
          testingEvaluation.crossValidateModel(classifier,
                                               trainSource.getDataSet(actualClassIndex),
View Full Code Here

Examples of java.util.Random

        outBuff.append("=== Model and evaluation on training set ===\n\n");
        break;

        case 2: // Percent split
        m_Log.statusMessage("Randomizing instances...");
        inst.randomize(new Random(1));
        trainInst.randomize(new Random(1));
        int trainSize = trainInst.numInstances() * percent / 100;
        int testSize = trainInst.numInstances() - trainSize;
        Instances train = new Instances(trainInst, 0, trainSize);
        Instances test = new Instances(trainInst, trainSize, testSize);
        Instances testVis = new Instances(inst, trainSize, testSize);
View Full Code Here

Examples of java.util.Random

             return;

         // need to set next port to random port in range if it is 0 and we
         // get to here - means the active port ranges have been changed
         if (nextPort == 0) {           
              nextPort = lowPort + new Random().nextInt(highPort-lowPort);
         }
         else
             nextPort++;

         // if exceeded the high port drop to low
View Full Code Here

Examples of java.util.Random

        JmxConfigurator.registerChannel(ch, Util.getMBeanServer(),
            "execution-service", ch.getClusterName(), true);
       
        // Start a consumer
        queue.add(executor.submit(runner));
        random = new Random();
        printValues = false;

        try {
            loop();
        }
View Full Code Here

Examples of java.util.Random

    int messagesSentPerView = 0;

    public GroupMemberThread(String name) {
      super(name);     
      payloads = new ArrayList();
      r = new Random();
      messagesSentPerView = r.nextInt(25);
    }
View Full Code Here

Examples of java.util.Random

    }

    private static void runBenchmarkWithRandomDistribution(int capacity, int round, ReplacementAlgorithm algo) {
        ConcurrentPluggableCache<Long, Long> cache = new ConcurrentPluggableCache<Long, Long>(capacity);
        cache.setReplacementPolicy(ReplacementPolicySelector.<Long, Long> provide(capacity, algo));
        Random rand = new Random(76675734342L);
        StopWatch watchdog = new StopWatch("capacity: " + capacity + ", round: " + round);
        for(int i = 0; i < round; i++) {
            long key = Math.abs(rand.nextLong()) % round;
            ICacheEntry<Long, Long> entry = cache.allocateEntry(key);
            entry.setValue(key);
            entry.unpin();
        }
        System.err.println(watchdog.toString());
View Full Code Here

Examples of java.util.Random

    // System.err.println("Using random seed "+rnd);
        } catch (Exception ex) {
    m_Log.logMessage("Trouble parsing random seed value");
    rnd = 1;
        }
        Random random = new Random(rnd);
        inst.randomize(random);
        if (inst.attribute(classIndex).isNominal()) {
    m_Log.statusMessage("Stratifying instances...");
    inst.stratify(numFolds);
        }
        eval = new Evaluation(inst, costMatrix);
       
         // make adjustments if the classifier is an InputMappedClassifier
              eval = setupEval(eval, classifier, inst, costMatrix,
                  plotInstances, classificationOutput, false);
       
//        plotInstances.setEvaluation(eval);
              plotInstances.setUp();
     
        if (outputPredictionsText) {
    printPredictionsHeader(outBuff, classificationOutput, "test data");
        }

        // Make some splits and do a CV
        for (int fold = 0; fold < numFolds; fold++) {
    m_Log.statusMessage("Creating splits for fold "
            + (fold + 1) + "...");
    Instances train = inst.trainCV(numFolds, fold, random);
   
    // make adjustments if the classifier is an InputMappedClassifier
          eval = setupEval(eval, classifier, train, costMatrix,
              plotInstances, classificationOutput, true);
         
//    eval.setPriors(train);
    m_Log.statusMessage("Building model for fold "
            + (fold + 1) + "...");
    Classifier current = null;
    try {
      current = AbstractClassifier.makeCopy(template);
    } catch (Exception ex) {
      m_Log.logMessage("Problem copying classifier: " + ex.getMessage());
    }
    current.buildClassifier(train);
    Instances test = inst.testCV(numFolds, fold);
    m_Log.statusMessage("Evaluating model for fold "
            + (fold + 1) + "...");
    for (int jj=0;jj<test.numInstances();jj++) {
      plotInstances.process(test.instance(jj), current, eval);
      if (outputPredictionsText) {
        classificationOutput.printClassification(current, test.instance(jj), jj);
      }
    }
        }
        if (outputPredictionsText)
    classificationOutput.printFooter();
        if (outputPredictionsText) {
    outBuff.append("\n");
        }
        if (inst.attribute(classIndex).isNominal()) {
    outBuff.append("=== Stratified cross-validation ===\n");
        } else {
    outBuff.append("=== Cross-validation ===\n");
        }
        break;
   
        case 2: // Percent split
        if (!m_PreserveOrderBut.isSelected()) {
    m_Log.statusMessage("Randomizing instances...");
    try {
      rnd = Integer.parseInt(m_RandomSeedText.getText().trim());
    } catch (Exception ex) {
      m_Log.logMessage("Trouble parsing random seed value");
      rnd = 1;
    }
    inst.randomize(new Random(rnd));
        }
        int trainSize = (int) Math.round(inst.numInstances() * percent / 100);
        int testSize = inst.numInstances() - trainSize;
        Instances train = new Instances(inst, 0, trainSize);
        Instances test = new Instances(inst, trainSize, testSize);
View Full Code Here

Examples of java.util.Random

    public CoarseCuckooHashSet(int capacity) {
        lock = new ReentrantLock();
        table = (T[][]) new Object[2][capacity];
        size = capacity;
        random = new Random();
    }
View Full Code Here

Examples of java.util.Random

        tmpFile.deleteOnExit();
        BTree btree = new BTree(tmpFile, false);
        btree.create(false);

        List<byte[]> list = new ArrayList<byte[]>(REPEAT);
        Random random = new Random(54552542345L);
        StopWatch sw1 = new StopWatch("[BplusTreeUniq] Index Construction of " + REPEAT);
        for(int i = 0; i < REPEAT; i++) {
            long v = random.nextLong();
            byte[] b = Primitives.toBytes(v);
            Value k = new Value(b);
            Assert.assertTrue(btree.addValue(k, v) == -1);
            list.add(b);
        }
View Full Code Here

Examples of java.util.Random

        int buckets = Primes.findLeastPrimeNumber(3000);
        SortedStaticHash hash = new SortedStaticHash(tmpFile, buckets);
        hash.create(false);

        List<byte[]> list = new ArrayList<byte[]>(REPEAT);
        Random random = new Random(54552542345L);
        StopWatch sw1 = new StopWatch("[SortedStaticHash_with_" + buckets
                + "_buckets] Index Construction of " + REPEAT);
        for(int i = 0; i < REPEAT; i++) {
            String d = Double.toString(random.nextLong());
            byte[] b = StringUtils.getBytes(d);
            Key k = new Key(b);
            Value v = new Value(b);
            Assert.assertNull(hash.addValue(k, v));
            list.add(b);
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.