Package weka.gui.explorer

Source Code of weka.gui.explorer.ClassifierPanel

/*
*    This program is free software; you can redistribute it and/or modify
*    it under the terms of the GNU General Public License as published by
*    the Free Software Foundation; either version 2 of the License, or
*    (at your option) any later version.
*
*    This program is distributed in the hope that it will be useful,
*    but WITHOUT ANY WARRANTY; without even the implied warranty of
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
*    GNU General Public License for more details.
*
*    You should have received a copy of the GNU General Public License
*    along with this program; if not, write to the Free Software
*    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

/*
*    ClassifierPanel.java
*    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
*
*/

package weka.gui.explorer;

import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.FlowLayout;
import java.awt.Font;
import java.awt.GridBagConstraints;
import java.awt.GridBagLayout;
import java.awt.GridLayout;
import java.awt.Insets;
import java.awt.Point;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.InputEvent;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import java.beans.PropertyChangeEvent;
import java.beans.PropertyChangeListener;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.OutputStream;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Random;
import java.util.Vector;
import java.util.zip.GZIPInputStream;
import java.util.zip.GZIPOutputStream;

import javax.swing.BorderFactory;
import javax.swing.ButtonGroup;
import javax.swing.DefaultComboBoxModel;
import javax.swing.JButton;
import javax.swing.JCheckBox;
import javax.swing.JComboBox;
import javax.swing.JDialog;
import javax.swing.JFileChooser;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JMenu;
import javax.swing.JMenuItem;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.JPopupMenu;
import javax.swing.JRadioButton;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import javax.swing.JTextField;
import javax.swing.JViewport;
import javax.swing.SwingConstants;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import javax.swing.filechooser.FileFilter;

import weka.classifiers.AbstractClassifier;
import weka.classifiers.Classifier;
import weka.classifiers.CostMatrix;
import weka.classifiers.Evaluation;
import weka.classifiers.Sourcable;
import weka.classifiers.evaluation.CostCurve;
import weka.classifiers.evaluation.MarginCurve;
import weka.classifiers.evaluation.ThresholdCurve;
import weka.classifiers.evaluation.output.prediction.AbstractOutput;
import weka.classifiers.evaluation.output.prediction.Null;
import weka.classifiers.pmml.consumer.PMMLClassifier;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.CapabilitiesHandler;
import weka.core.Drawable;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.OptionHandler;
import weka.core.Range;
import weka.core.SerializedObject;
import weka.core.Utils;
import weka.core.Version;
import weka.core.converters.IncrementalConverter;
import weka.core.converters.Loader;
import weka.core.converters.ConverterUtils.DataSource;
import weka.core.pmml.PMMLFactory;
import weka.core.pmml.PMMLModel;
import weka.gui.CostMatrixEditor;
import weka.gui.ExtensionFileFilter;
import weka.gui.GenericObjectEditor;
import weka.gui.Logger;
import weka.gui.PropertyDialog;
import weka.gui.PropertyPanel;
import weka.gui.ResultHistoryPanel;
import weka.gui.SaveBuffer;
import weka.gui.SetInstancesPanel;
import weka.gui.SysErrLog;
import weka.gui.TaskLogger;
import weka.gui.beans.CostBenefitAnalysis;
import weka.gui.explorer.Explorer.CapabilitiesFilterChangeEvent;
import weka.gui.explorer.Explorer.CapabilitiesFilterChangeListener;
import weka.gui.explorer.Explorer.ExplorerPanel;
import weka.gui.explorer.Explorer.LogHandler;
import weka.gui.graphvisualizer.BIFFormatException;
import weka.gui.graphvisualizer.GraphVisualizer;
import weka.gui.treevisualizer.PlaceNode2;
import weka.gui.treevisualizer.TreeVisualizer;
import weka.gui.visualize.PlotData2D;
import weka.gui.visualize.ThresholdVisualizePanel;
import weka.gui.visualize.VisualizePanel;
import weka.gui.visualize.plugins.ErrorVisualizePlugin;
import weka.gui.visualize.plugins.GraphVisualizePlugin;
import weka.gui.visualize.plugins.TreeVisualizePlugin;
import weka.gui.visualize.plugins.VisualizePlugin;

/**
* This panel allows the user to select and configure a classifier, set the
* attribute of the current dataset to be used as the class, and evaluate
* the classifier using a number of testing modes (test on the training data,
* train/test on a percentage split, n-fold cross-validation, test on a
* separate split). The results of classification runs are stored in a result
* history so that previous results are accessible.
*
* @author Len Trigg (trigg@cs.waikato.ac.nz)
* @author Mark Hall (mhall@cs.waikato.ac.nz)
* @author Richard Kirkby (rkirkby@cs.waikato.ac.nz)
* @version $Revision: 6895 $
*/
public class ClassifierPanel
  extends JPanel
  implements CapabilitiesFilterChangeListener, ExplorerPanel, LogHandler {
  
  /** for serialization. */
  static final long serialVersionUID = 6959973704963624003L;

  /** the parent frame. */
  protected Explorer m_Explorer = null;

  /** The filename extension that should be used for model files. */
  public static String MODEL_FILE_EXTENSION = ".model";
 
  /** The filename extension that should be used for PMML xml files. */
  public static String PMML_FILE_EXTENSION = ".xml";

  /** Lets the user configure the classifier. */
  protected GenericObjectEditor m_ClassifierEditor =
    new GenericObjectEditor();

  /** The panel showing the current classifier selection. */
  protected PropertyPanel m_CEPanel = new PropertyPanel(m_ClassifierEditor);
 
  /** The output area for classification results. */
  protected JTextArea m_OutText = new JTextArea(20, 40);

  /** The destination for log/status messages. */
  protected Logger m_Log = new SysErrLog();

  /** The buffer saving object for saving output. */
  SaveBuffer m_SaveOut = new SaveBuffer(m_Log, this);

  /** A panel controlling results viewing. */
  protected ResultHistoryPanel m_History = new ResultHistoryPanel(m_OutText);

  /** Lets the user select the class column. */
  protected JComboBox m_ClassCombo = new JComboBox();

  /** Click to set test mode to cross-validation. */
  protected JRadioButton m_CVBut = new JRadioButton("Cross-validation");

  /** Click to set test mode to generate a % split. */
  protected JRadioButton m_PercentBut = new JRadioButton("Percentage split");

  /** Click to set test mode to test on training data. */
  protected JRadioButton m_TrainBut = new JRadioButton("Use training set");

  /** Click to set test mode to a user-specified test set. */
  protected JRadioButton m_TestSplitBut =
    new JRadioButton("Supplied test set");

  /** Check to save the predictions in the results list for visualizing
      later on. */
  protected JCheckBox m_StorePredictionsBut =
    new JCheckBox("Store predictions for visualization");

  /** Check to output the model built from the training data. */
  protected JCheckBox m_OutputModelBut = new JCheckBox("Output model");

  /** Check to output true/false positives, precision/recall for each class. */
  protected JCheckBox m_OutputPerClassBut =
    new JCheckBox("Output per-class stats");

  /** Check to output a confusion matrix. */
  protected JCheckBox m_OutputConfusionBut =
    new JCheckBox("Output confusion matrix");

  /** Check to output entropy statistics. */
  protected JCheckBox m_OutputEntropyBut =
    new JCheckBox("Output entropy evaluation measures");

  /** Lets the user configure the ClassificationOutput. */
  protected GenericObjectEditor m_ClassificationOutputEditor = new GenericObjectEditor(true);

  /** ClassificationOutput configuration. */
  protected PropertyPanel m_ClassificationOutputPanel = new PropertyPanel(m_ClassificationOutputEditor);
 
  /** the range of attributes to output. */
  protected Range m_OutputAdditionalAttributesRange = null;
 
  /** Check to evaluate w.r.t a cost matrix. */
  protected JCheckBox m_EvalWRTCostsBut =
    new JCheckBox("Cost-sensitive evaluation");

  /** for the cost matrix. */
  protected JButton m_SetCostsBut = new JButton("Set...");

  /** Label by where the cv folds are entered. */
  protected JLabel m_CVLab = new JLabel("Folds", SwingConstants.RIGHT);

  /** The field where the cv folds are entered. */
  protected JTextField m_CVText = new JTextField("10", 3);

  /** Label by where the % split is entered. */
  protected JLabel m_PercentLab = new JLabel("%", SwingConstants.RIGHT);

  /** The field where the % split is entered. */
  protected JTextField m_PercentText = new JTextField("66", 3);

  /** The button used to open a separate test dataset. */
  protected JButton m_SetTestBut = new JButton("Set...");

  /** The frame used to show the test set selection panel. */
  protected JFrame m_SetTestFrame;

  /** The frame used to show the cost matrix editing panel. */
  protected PropertyDialog m_SetCostsFrame;

  /**
   * Alters the enabled/disabled status of elements associated with each
   * radio button.
   */
  ActionListener m_RadioListener = new ActionListener() {
    public void actionPerformed(ActionEvent e) {
      updateRadioLinks();
    }
  };

  /** Button for further output/visualize options. */
  JButton m_MoreOptions = new JButton("More options...");

  /** User specified random seed for cross validation or % split. */
  protected JTextField m_RandomSeedText = new JTextField("1", 3);
 
  /** the label for the random seed textfield. */
  protected JLabel m_RandomLab = new JLabel("Random seed for XVal / % Split",
              SwingConstants.RIGHT);

  /** Whether randomization is turned off to preserve order. */
  protected JCheckBox m_PreserveOrderBut = new JCheckBox("Preserve order for % Split");

  /** Whether to output the source code (only for classifiers importing Sourcable). */
  protected JCheckBox m_OutputSourceCode = new JCheckBox("Output source code");

  /** The name of the generated class (only applicable to Sourcable schemes). */
  protected JTextField m_SourceCodeClass = new JTextField("WekaClassifier", 10);
 
  /** Click to start running the classifier. */
  protected JButton m_StartBut = new JButton("Start");

  /** Click to stop a running classifier. */
  protected JButton m_StopBut = new JButton("Stop");

  /** Stop the class combo from taking up to much space. */
  private Dimension COMBO_SIZE = new Dimension(150, m_StartBut
                 .getPreferredSize().height);

  /** The cost matrix editor for evaluation costs. */
  protected CostMatrixEditor m_CostMatrixEditor = new CostMatrixEditor();

  /** The main set of instances we're playing with. */
  protected Instances m_Instances;

  /** The loader used to load the user-supplied test set (if any). */
  protected Loader m_TestLoader;
 
  /** the class index for the supplied test set. */
  protected int m_TestClassIndex = -1;
 
  /** A thread that classification runs in. */
  protected Thread m_RunThread;

  /** The current visualization object. */
  protected VisualizePanel m_CurrentVis = null;

  /** Filter to ensure only model files are selected. */ 
  protected FileFilter m_ModelFilter =
    new ExtensionFileFilter(MODEL_FILE_EXTENSION, "Model object files");
 
  protected FileFilter m_PMMLModelFilter =
    new ExtensionFileFilter(PMML_FILE_EXTENSION, "PMML model files");

  /** The file chooser for selecting model files. */
  protected JFileChooser m_FileChooser
    = new JFileChooser(new File(System.getProperty("user.dir")));

  /* Register the property editors we need */
  static {
     GenericObjectEditor.registerEditors();
  }
 
  /**
   * Creates the classifier panel.
   */
  public ClassifierPanel() {

    // Connect / configure the components
    m_OutText.setEditable(false);
    m_OutText.setFont(new Font("Monospaced", Font.PLAIN, 12));
    m_OutText.setBorder(BorderFactory.createEmptyBorder(5, 5, 5, 5));
    m_OutText.addMouseListener(new MouseAdapter() {
      public void mouseClicked(MouseEvent e) {
  if ((e.getModifiers() & InputEvent.BUTTON1_MASK)
      != InputEvent.BUTTON1_MASK) {
    m_OutText.selectAll();
  }
      }
    });
    m_History.setBorder(BorderFactory.createTitledBorder("Result list (right-click for options)"));
    m_ClassifierEditor.setClassType(Classifier.class);
    m_ClassifierEditor.setValue(ExplorerDefaults.getClassifier());
    m_ClassifierEditor.addPropertyChangeListener(new PropertyChangeListener() {
      public void propertyChange(PropertyChangeEvent e) {
        m_StartBut.setEnabled(true);
        // Check capabilities
        Capabilities currentFilter = m_ClassifierEditor.getCapabilitiesFilter();
        Classifier classifier = (Classifier) m_ClassifierEditor.getValue();
        Capabilities currentSchemeCapabilities =  null;
        if (classifier != null && currentFilter != null &&
            (classifier instanceof CapabilitiesHandler)) {
          currentSchemeCapabilities = ((CapabilitiesHandler)classifier).getCapabilities();
         
          if (!currentSchemeCapabilities.supportsMaybe(currentFilter) &&
              !currentSchemeCapabilities.supports(currentFilter)) {
            m_StartBut.setEnabled(false);
          }
        }
  repaint();
      }
    });

    m_ClassCombo.setToolTipText("Select the attribute to use as the class");
    m_TrainBut.setToolTipText("Test on the same set that the classifier"
            + " is trained on");
    m_CVBut.setToolTipText("Perform a n-fold cross-validation");
    m_PercentBut.setToolTipText("Train on a percentage of the data and"
        + " test on the remainder");
    m_TestSplitBut.setToolTipText("Test on a user-specified dataset");
    m_StartBut.setToolTipText("Starts the classification");
    m_StopBut.setToolTipText("Stops a running classification");
    m_StorePredictionsBut.
      setToolTipText("Store predictions in the result list for later "
         +"visualization");
    m_OutputModelBut
      .setToolTipText("Output the model obtained from the full training set");
    m_OutputPerClassBut.setToolTipText("Output precision/recall & true/false"
            + " positives for each class");
    m_OutputConfusionBut
      .setToolTipText("Output the matrix displaying class confusions");
    m_OutputEntropyBut
      .setToolTipText("Output entropy-based evaluation measures");
    m_EvalWRTCostsBut
      .setToolTipText("Evaluate errors with respect to a cost matrix");
    m_RandomLab.setToolTipText("The seed value for randomization");
    m_RandomSeedText.setToolTipText(m_RandomLab.getToolTipText());
    m_PreserveOrderBut.setToolTipText("Preserves the order in a percentage split");
    m_OutputSourceCode.setToolTipText(
      "Whether to output the built classifier as Java source code");
    m_SourceCodeClass.setToolTipText("The classname of the built classifier");

    m_FileChooser.addChoosableFileFilter(m_PMMLModelFilter);
    m_FileChooser.setFileFilter(m_ModelFilter);
   
    m_FileChooser.setFileSelectionMode(JFileChooser.FILES_ONLY);

    m_ClassificationOutputEditor.setClassType(AbstractOutput.class);
    m_ClassificationOutputEditor.setValue(new Null());
   
    m_StorePredictionsBut.setSelected(ExplorerDefaults.getClassifierStorePredictionsForVis());
    m_OutputModelBut.setSelected(ExplorerDefaults.getClassifierOutputModel());
    m_OutputPerClassBut.setSelected(ExplorerDefaults.getClassifierOutputPerClassStats());
    m_OutputConfusionBut.setSelected(ExplorerDefaults.getClassifierOutputConfusionMatrix());
    m_EvalWRTCostsBut.setSelected(ExplorerDefaults.getClassifierCostSensitiveEval());
    m_OutputEntropyBut.setSelected(ExplorerDefaults.getClassifierOutputEntropyEvalMeasures());
    m_RandomSeedText.setText("" + ExplorerDefaults.getClassifierRandomSeed());
    m_PreserveOrderBut.setSelected(ExplorerDefaults.getClassifierPreserveOrder());
    m_OutputSourceCode.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e) {
        m_SourceCodeClass.setEnabled(m_OutputSourceCode.isSelected());
      }
    });
    m_OutputSourceCode.setSelected(ExplorerDefaults.getClassifierOutputSourceCode());
    m_SourceCodeClass.setText(ExplorerDefaults.getClassifierSourceCodeClass());
    m_SourceCodeClass.setEnabled(m_OutputSourceCode.isSelected());
    m_ClassCombo.setEnabled(false);
    m_ClassCombo.setPreferredSize(COMBO_SIZE);
    m_ClassCombo.setMaximumSize(COMBO_SIZE);
    m_ClassCombo.setMinimumSize(COMBO_SIZE);

    m_CVBut.setSelected(true);
    // see "testMode" variable in startClassifier
    m_CVBut.setSelected(ExplorerDefaults.getClassifierTestMode() == 1);
    m_PercentBut.setSelected(ExplorerDefaults.getClassifierTestMode() == 2);
    m_TrainBut.setSelected(ExplorerDefaults.getClassifierTestMode() == 3);
    m_TestSplitBut.setSelected(ExplorerDefaults.getClassifierTestMode() == 4);
    m_PercentText.setText("" + ExplorerDefaults.getClassifierPercentageSplit());
    m_CVText.setText("" + ExplorerDefaults.getClassifierCrossvalidationFolds());
    updateRadioLinks();
    ButtonGroup bg = new ButtonGroup();
    bg.add(m_TrainBut);
    bg.add(m_CVBut);
    bg.add(m_PercentBut);
    bg.add(m_TestSplitBut);
    m_TrainBut.addActionListener(m_RadioListener);
    m_CVBut.addActionListener(m_RadioListener);
    m_PercentBut.addActionListener(m_RadioListener);
    m_TestSplitBut.addActionListener(m_RadioListener);
    m_SetTestBut.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e) {
  setTestSet();
      }
    });
    m_EvalWRTCostsBut.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e) {
  m_SetCostsBut.setEnabled(m_EvalWRTCostsBut.isSelected());
  if ((m_SetCostsFrame != null)
      && (!m_EvalWRTCostsBut.isSelected())) {
    m_SetCostsFrame.setVisible(false);
  }
      }
    });
    m_CostMatrixEditor.setValue(new CostMatrix(1));
    m_SetCostsBut.setEnabled(m_EvalWRTCostsBut.isSelected());
    m_SetCostsBut.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e) {
  m_SetCostsBut.setEnabled(false);
  if (m_SetCostsFrame == null) {
    if (PropertyDialog.getParentDialog(ClassifierPanel.this) != null)
      m_SetCostsFrame = new PropertyDialog(
    PropertyDialog.getParentDialog(ClassifierPanel.this),
    m_CostMatrixEditor, 100, 100);
    else
      m_SetCostsFrame = new PropertyDialog(
    PropertyDialog.getParentFrame(ClassifierPanel.this),
    m_CostMatrixEditor, 100, 100);
    m_SetCostsFrame.setTitle("Cost Matrix Editor");
    //  pd.setSize(250,150);
    m_SetCostsFrame.addWindowListener(new java.awt.event.WindowAdapter() {
      public void windowClosing(java.awt.event.WindowEvent p) {
        m_SetCostsBut.setEnabled(m_EvalWRTCostsBut.isSelected());
        if ((m_SetCostsFrame != null)
      && (!m_EvalWRTCostsBut.isSelected())) {
    m_SetCostsFrame.setVisible(false);
        }
      }
    });
    m_SetCostsFrame.setVisible(true);
  }
 
  // do we need to change the size of the matrix?
  int classIndex = m_ClassCombo.getSelectedIndex();
  int numClasses = m_Instances.attribute(classIndex).numValues();
  if (numClasses != ((CostMatrix) m_CostMatrixEditor.getValue()).numColumns())
    m_CostMatrixEditor.setValue(new CostMatrix(numClasses));
 
  m_SetCostsFrame.setVisible(true);
      }
    });

    m_StartBut.setEnabled(false);
    m_StopBut.setEnabled(false);
    m_StartBut.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e) {
  startClassifier();
      }
    });
    m_StopBut.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e) {
  stopClassifier();
      }
    });
  
    m_ClassCombo.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e) {
  int selected = m_ClassCombo.getSelectedIndex();
  if (selected != -1) {
    boolean isNominal = m_Instances.attribute(selected).isNominal();
    m_OutputPerClassBut.setEnabled(isNominal);
    m_OutputConfusionBut.setEnabled(isNominal)
  }
  updateCapabilitiesFilter(m_ClassifierEditor.getCapabilitiesFilter());
      }
    });

    m_History.setHandleRightClicks(false);
    // see if we can popup a menu for the selected result
    m_History.getList().addMouseListener(new MouseAdapter() {
  public void mouseClicked(MouseEvent e) {
    if (((e.getModifiers() & InputEvent.BUTTON1_MASK)
         != InputEvent.BUTTON1_MASK) || e.isAltDown()) {
      int index = m_History.getList().locationToIndex(e.getPoint());
      if (index != -1) {
        String name = m_History.getNameAtIndex(index);
        visualize(name, e.getX(), e.getY());
      } else {
        visualize(null, e.getX(), e.getY());
      }
    }
  }
      });

    m_MoreOptions.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e) {
  m_MoreOptions.setEnabled(false);
  JPanel moreOptionsPanel = new JPanel();
  moreOptionsPanel.setBorder(BorderFactory.createEmptyBorder(0, 5, 5, 5));
  moreOptionsPanel.setLayout(new GridLayout(10, 1));
  moreOptionsPanel.add(m_OutputModelBut);
  moreOptionsPanel.add(m_OutputPerClassBut);   
  moreOptionsPanel.add(m_OutputEntropyBut);   
  moreOptionsPanel.add(m_OutputConfusionBut);   
  moreOptionsPanel.add(m_StorePredictionsBut);
  JPanel classOutPanel = new JPanel(new FlowLayout(FlowLayout.LEFT));
  classOutPanel.add(new JLabel("Output predictions"));
  classOutPanel.add(m_ClassificationOutputPanel);
  moreOptionsPanel.add(classOutPanel);
  JPanel costMatrixOption = new JPanel(new FlowLayout(FlowLayout.LEFT));
  costMatrixOption.add(m_EvalWRTCostsBut);
  costMatrixOption.add(m_SetCostsBut);
  moreOptionsPanel.add(costMatrixOption);
  JPanel seedPanel = new JPanel(new FlowLayout(FlowLayout.LEFT));
  seedPanel.add(m_RandomLab);
  seedPanel.add(m_RandomSeedText);
  moreOptionsPanel.add(seedPanel);
  moreOptionsPanel.add(m_PreserveOrderBut);
        JPanel sourcePanel = new JPanel(new FlowLayout(FlowLayout.LEFT));
        m_OutputSourceCode.setEnabled(m_ClassifierEditor.getValue() instanceof Sourcable);
        m_SourceCodeClass.setEnabled(m_OutputSourceCode.isEnabled() && m_OutputSourceCode.isSelected());
        sourcePanel.add(m_OutputSourceCode);
        sourcePanel.add(m_SourceCodeClass);
        moreOptionsPanel.add(sourcePanel);

  JPanel all = new JPanel();
  all.setLayout(new BorderLayout())

  JButton oK = new JButton("OK");
  JPanel okP = new JPanel();
  okP.setBorder(BorderFactory.createEmptyBorder(5, 5, 5, 5));
  okP.setLayout(new GridLayout(1,1,5,5));
  okP.add(oK);

  all.add(moreOptionsPanel, BorderLayout.CENTER);
  all.add(okP, BorderLayout.SOUTH);
 
  final JDialog jd =
    new JDialog(PropertyDialog.getParentFrame(ClassifierPanel.this), "Classifier evaluation options");
  jd.getContentPane().setLayout(new BorderLayout());
  jd.getContentPane().add(all, BorderLayout.CENTER);
  jd.addWindowListener(new java.awt.event.WindowAdapter() {
    public void windowClosing(java.awt.event.WindowEvent w) {
      jd.dispose();
      m_MoreOptions.setEnabled(true);
    }
  });
  oK.addActionListener(new ActionListener() {
    public void actionPerformed(ActionEvent a) {
      m_MoreOptions.setEnabled(true);
      jd.dispose();
    }
  });
  jd.pack();
 
  // panel height is only available now
  m_ClassificationOutputPanel.setPreferredSize(new Dimension(300, m_ClassificationOutputPanel.getHeight()));
  jd.pack();
 
  jd.setLocation(m_MoreOptions.getLocationOnScreen());
  jd.setVisible(true);
      }
    });

    // Layout the GUI
    JPanel p1 = new JPanel();
    p1.setBorder(BorderFactory.createCompoundBorder(
     BorderFactory.createTitledBorder("Classifier"),
     BorderFactory.createEmptyBorder(0, 5, 5, 5)
     ));
    p1.setLayout(new BorderLayout());
    p1.add(m_CEPanel, BorderLayout.NORTH);

    JPanel p2 = new JPanel();
    GridBagLayout gbL = new GridBagLayout();
    p2.setLayout(gbL);
    p2.setBorder(BorderFactory.createCompoundBorder(
     BorderFactory.createTitledBorder("Test options"),
     BorderFactory.createEmptyBorder(0, 5, 5, 5)
     ));
    GridBagConstraints gbC = new GridBagConstraints();
    gbC.anchor = GridBagConstraints.WEST;
    gbC.gridy = 0;     gbC.gridx = 0;
    gbL.setConstraints(m_TrainBut, gbC);
    p2.add(m_TrainBut);

    gbC = new GridBagConstraints();
    gbC.anchor = GridBagConstraints.WEST;
    gbC.gridy = 1;     gbC.gridx = 0;
    gbL.setConstraints(m_TestSplitBut, gbC);
    p2.add(m_TestSplitBut);

    gbC = new GridBagConstraints();
    gbC.anchor = GridBagConstraints.EAST;
    gbC.fill = GridBagConstraints.HORIZONTAL;
    gbC.gridy = 1;     gbC.gridx = 1;    gbC.gridwidth = 2;
    gbC.insets = new Insets(2, 10, 2, 0);
    gbL.setConstraints(m_SetTestBut, gbC);
    p2.add(m_SetTestBut);

    gbC = new GridBagConstraints();
    gbC.anchor = GridBagConstraints.WEST;
    gbC.gridy = 2;     gbC.gridx = 0;
    gbL.setConstraints(m_CVBut, gbC);
    p2.add(m_CVBut);

    gbC = new GridBagConstraints();
    gbC.anchor = GridBagConstraints.EAST;
    gbC.fill = GridBagConstraints.HORIZONTAL;
    gbC.gridy = 2;     gbC.gridx = 1;
    gbC.insets = new Insets(2, 10, 2, 10);
    gbL.setConstraints(m_CVLab, gbC);
    p2.add(m_CVLab);

    gbC = new GridBagConstraints();
    gbC.anchor = GridBagConstraints.EAST;
    gbC.fill = GridBagConstraints.HORIZONTAL;
    gbC.gridy = 2;     gbC.gridx = 2;  gbC.weightx = 100;
    gbC.ipadx = 20;
    gbL.setConstraints(m_CVText, gbC);
    p2.add(m_CVText);

    gbC = new GridBagConstraints();
    gbC.anchor = GridBagConstraints.WEST;
    gbC.gridy = 3;     gbC.gridx = 0;
    gbL.setConstraints(m_PercentBut, gbC);
    p2.add(m_PercentBut);

    gbC = new GridBagConstraints();
    gbC.anchor = GridBagConstraints.EAST;
    gbC.fill = GridBagConstraints.HORIZONTAL;
    gbC.gridy = 3;     gbC.gridx = 1;
    gbC.insets = new Insets(2, 10, 2, 10);
    gbL.setConstraints(m_PercentLab, gbC);
    p2.add(m_PercentLab);

    gbC = new GridBagConstraints();
    gbC.anchor = GridBagConstraints.EAST;
    gbC.fill = GridBagConstraints.HORIZONTAL;
    gbC.gridy = 3;     gbC.gridx = 2;  gbC.weightx = 100;
    gbC.ipadx = 20;
    gbL.setConstraints(m_PercentText, gbC);
    p2.add(m_PercentText);


    gbC = new GridBagConstraints();
    gbC.anchor = GridBagConstraints.WEST;
    gbC.fill = GridBagConstraints.HORIZONTAL;
    gbC.gridy = 4;     gbC.gridx = 0;  gbC.weightx = 100;
    gbC.gridwidth = 3;

    gbC.insets = new Insets(3, 0, 1, 0);
    gbL.setConstraints(m_MoreOptions, gbC);
    p2.add(m_MoreOptions);

    JPanel buttons = new JPanel();
    buttons.setLayout(new GridLayout(2, 2));
    buttons.add(m_ClassCombo);
    m_ClassCombo.setBorder(BorderFactory.createEmptyBorder(5, 5, 5, 5));
    JPanel ssButs = new JPanel();
    ssButs.setBorder(BorderFactory.createEmptyBorder(5, 5, 5, 5));
    ssButs.setLayout(new GridLayout(1, 2, 5, 5));
    ssButs.add(m_StartBut);
    ssButs.add(m_StopBut);

    buttons.add(ssButs);
   
    JPanel p3 = new JPanel();
    p3.setBorder(BorderFactory.createTitledBorder("Classifier output"));
    p3.setLayout(new BorderLayout());
    final JScrollPane js = new JScrollPane(m_OutText);
    p3.add(js, BorderLayout.CENTER);
    js.getViewport().addChangeListener(new ChangeListener() {
      private int lastHeight;
      public void stateChanged(ChangeEvent e) {
  JViewport vp = (JViewport)e.getSource();
  int h = vp.getViewSize().height;
  if (h != lastHeight) { // i.e. an addition not just a user scrolling
    lastHeight = h;
    int x = h - vp.getExtentSize().height;
    vp.setViewPosition(new Point(0, x));
  }
      }
    });
   
    JPanel mondo = new JPanel();
    gbL = new GridBagLayout();
    mondo.setLayout(gbL);
    gbC = new GridBagConstraints();
    //    gbC.anchor = GridBagConstraints.WEST;
    gbC.fill = GridBagConstraints.HORIZONTAL;
    gbC.gridy = 0;     gbC.gridx = 0;
    gbL.setConstraints(p2, gbC);
    mondo.add(p2);
    gbC = new GridBagConstraints();
    gbC.anchor = GridBagConstraints.NORTH;
    gbC.fill = GridBagConstraints.HORIZONTAL;
    gbC.gridy = 1;     gbC.gridx = 0;
    gbL.setConstraints(buttons, gbC);
    mondo.add(buttons);
    gbC = new GridBagConstraints();
    //gbC.anchor = GridBagConstraints.NORTH;
    gbC.fill = GridBagConstraints.BOTH;
    gbC.gridy = 2;     gbC.gridx = 0; gbC.weightx = 0;
    gbL.setConstraints(m_History, gbC);
    mondo.add(m_History);
    gbC = new GridBagConstraints();
    gbC.fill = GridBagConstraints.BOTH;
    gbC.gridy = 0;     gbC.gridx = 1;
    gbC.gridheight = 3;
    gbC.weightx = 100; gbC.weighty = 100;
    gbL.setConstraints(p3, gbC);
    mondo.add(p3);

    setLayout(new BorderLayout());
    add(p1, BorderLayout.NORTH);
    add(mondo, BorderLayout.CENTER);
  }

 
  /**
   * Updates the enabled status of the input fields and labels.
   */
  protected void updateRadioLinks() {
   
    m_SetTestBut.setEnabled(m_TestSplitBut.isSelected());
    if ((m_SetTestFrame != null) && (!m_TestSplitBut.isSelected())) {
      m_SetTestFrame.setVisible(false);
    }
    m_CVText.setEnabled(m_CVBut.isSelected());
    m_CVLab.setEnabled(m_CVBut.isSelected());
    m_PercentText.setEnabled(m_PercentBut.isSelected());
    m_PercentLab.setEnabled(m_PercentBut.isSelected());
  }

  /**
   * Sets the Logger to receive informational messages.
   *
   * @param newLog the Logger that will now get info messages
   */
  public void setLog(Logger newLog) {

    m_Log = newLog;
  }

  /**
   * Tells the panel to use a new set of instances.
   *
   * @param inst a set of Instances
   */
  public void setInstances(Instances inst) {
    m_Instances = inst;

    String [] attribNames = new String [m_Instances.numAttributes()];
    for (int i = 0; i < attribNames.length; i++) {
      String type = "(" + Attribute.typeToStringShort(m_Instances.attribute(i)) + ") ";
      attribNames[i] = type + m_Instances.attribute(i).name();
    }
    m_ClassCombo.setModel(new DefaultComboBoxModel(attribNames));
    if (attribNames.length > 0) {
      if (inst.classIndex() == -1)
  m_ClassCombo.setSelectedIndex(attribNames.length - 1);
      else
  m_ClassCombo.setSelectedIndex(inst.classIndex());
      m_ClassCombo.setEnabled(true);
      m_StartBut.setEnabled(m_RunThread == null);
      m_StopBut.setEnabled(m_RunThread != null);
    } else {
      m_StartBut.setEnabled(false);
      m_StopBut.setEnabled(false);
    }
  }

  /**
   * Sets the user test set. Information about the current test set
   * is displayed in an InstanceSummaryPanel and the user is given the
   * ability to load another set from a file or url.
   *
   */
  protected void setTestSet() {

    if (m_SetTestFrame == null) {
      final SetInstancesPanel sp = new SetInstancesPanel(true, true);

      if (m_TestLoader != null) {
        try {
          if (m_TestLoader.getStructure() != null) {
            sp.setInstances(m_TestLoader.getStructure());
          }
        } catch (Exception ex) {
          ex.printStackTrace();
        }
      }
      sp.addPropertyChangeListener(new PropertyChangeListener() {
  public void propertyChange(PropertyChangeEvent e) {
    m_TestLoader     = sp.getLoader();
    m_TestClassIndex = sp.getClassIndex();
  }
      });
      // Add propertychangelistener to update m_TestLoader whenever
      // it changes in the settestframe
      m_SetTestFrame = new JFrame("Test Instances");
      sp.setParentFrame(m_SetTestFrame);   // enable Close-Button
      m_SetTestFrame.getContentPane().setLayout(new BorderLayout());
      m_SetTestFrame.getContentPane().add(sp, BorderLayout.CENTER);
      m_SetTestFrame.pack();
    }
    m_SetTestFrame.setVisible(true);
  }

  /**
   * outputs the header for the predictions on the data.
   *
   * @param outBuff      the buffer to add the output to
   * @param classificationOutput  for generating the classification output
   * @param title      the title to print
   */
  protected void printPredictionsHeader(StringBuffer outBuff, AbstractOutput classificationOutput, String title) {
    if (classificationOutput.generatesOutput())
      outBuff.append("=== Predictions on " + title + " ===\n\n");
    classificationOutput.printHeader();
  }
 
  protected static Evaluation setupEval(Evaluation eval, Classifier classifier,
      Instances inst, CostMatrix costMatrix,
      ClassifierErrorsPlotInstances plotInstances,
      AbstractOutput classificationOutput,
      boolean onlySetPriors) throws Exception {
       
    if (classifier instanceof weka.classifiers.misc.InputMappedClassifier) {
      Instances mappedClassifierHeader =
        ((weka.classifiers.misc.InputMappedClassifier)classifier).
          getModelHeader(new Instances(inst, 0));
     
      if (classificationOutput != null) {
        classificationOutput.setHeader(mappedClassifierHeader);
      }
     
      if (!onlySetPriors) {
        if (costMatrix != null) {
          eval = new Evaluation(new Instances(mappedClassifierHeader, 0), costMatrix);
        } else {
          eval = new Evaluation(new Instances(mappedClassifierHeader, 0));
        }
      }
     
      if (!eval.getHeader().equalHeaders(inst)) {
        // When the InputMappedClassifier is loading a model,
        // we need to make a new dataset that maps the training instances to
        // the structure expected by the mapped classifier - this is only
        // to ensure that the structure and priors computed by
        // evaluation object is correct with respect to the mapped classifier
        Instances mappedClassifierDataset =
          ((weka.classifiers.misc.InputMappedClassifier)classifier).
            getModelHeader(new Instances(mappedClassifierHeader, 0));
        for (int zz = 0; zz < inst.numInstances(); zz++) {
          Instance mapped = ((weka.classifiers.misc.InputMappedClassifier)classifier).
            constructMappedInstance(inst.instance(zz));
          mappedClassifierDataset.add(mapped);
        }
        eval.setPriors(mappedClassifierDataset);
        if (!onlySetPriors) {
          if (plotInstances != null) {
            plotInstances.setInstances(mappedClassifierDataset);
            plotInstances.setClassifier(classifier);
            /*          int mappedClass =
            ((weka.classifiers.misc.InputMappedClassifier)classifier).getMappedClassIndex();
          System.err.println("Mapped class index " + mappedClass); */
            plotInstances.setClassIndex(mappedClassifierDataset.classIndex());
            plotInstances.setEvaluation(eval);
          }
        }
      } else {
        eval.setPriors(inst);
        if (!onlySetPriors) {
          if (plotInstances != null) {
            plotInstances.setInstances(inst);
            plotInstances.setClassifier(classifier);
            plotInstances.setClassIndex(inst.classIndex());
            plotInstances.setEvaluation(eval);
          }
        }
      }
    } else {
      eval.setPriors(inst);
      if (!onlySetPriors) {
        if (plotInstances != null) {
          plotInstances.setInstances(inst);
          plotInstances.setClassifier(classifier);
          plotInstances.setClassIndex(inst.classIndex());
          plotInstances.setEvaluation(eval);
        }
      }
    }
   
    return eval;
 
 
  /**
   * Starts running the currently configured classifier with the current
   * settings. This is run in a separate thread, and will only start if
   * there is no classifier already running. The classifier output is sent
   * to the results history panel.
   */
  protected void startClassifier() {

    if (m_RunThread == null) {
      synchronized (this) {
  m_StartBut.setEnabled(false);
  m_StopBut.setEnabled(true);
      }
      m_RunThread = new Thread() {
  public void run() {
    // Copy the current state of things
    m_Log.statusMessage("Setting up...");
    CostMatrix costMatrix = null;
    Instances inst = new Instances(m_Instances);
    DataSource source = null;
          Instances userTestStructure = null;
    ClassifierErrorsPlotInstances plotInstances = null;
   
    // for timing
    long trainTimeStart = 0, trainTimeElapsed = 0;

          try {
            if (m_TestLoader != null && m_TestLoader.getStructure() != null) {
              m_TestLoader.reset();
              source = new DataSource(m_TestLoader);
              userTestStructure = source.getStructure();
              userTestStructure.setClassIndex(m_TestClassIndex);
            }
          } catch (Exception ex) {
            ex.printStackTrace();
          }
    if (m_EvalWRTCostsBut.isSelected()) {
      costMatrix = new CostMatrix((CostMatrix) m_CostMatrixEditor
          .getValue());
    }
    boolean outputModel = m_OutputModelBut.isSelected();
    boolean outputConfusion = m_OutputConfusionBut.isSelected();
    boolean outputPerClass = m_OutputPerClassBut.isSelected();
    boolean outputSummary = true;
          boolean outputEntropy = m_OutputEntropyBut.isSelected();
    boolean saveVis = m_StorePredictionsBut.isSelected();
    boolean outputPredictionsText = (m_ClassificationOutputEditor.getValue().getClass() != Null.class);

    String grph = null;

    int testMode = 0;
    int numFolds = 10;
          double percent = 66;
    int classIndex = m_ClassCombo.getSelectedIndex();
    inst.setClassIndex(classIndex);
    Classifier classifier = (Classifier) m_ClassifierEditor.getValue();
    Classifier template = null;
    try {
      template = AbstractClassifier.makeCopy(classifier);
    } catch (Exception ex) {
      m_Log.logMessage("Problem copying classifier: " + ex.getMessage());
    }
    Classifier fullClassifier = null;
    StringBuffer outBuff = new StringBuffer();
    AbstractOutput classificationOutput = null;
    if (outputPredictionsText) {
      classificationOutput = (AbstractOutput) m_ClassificationOutputEditor.getValue();
      Instances header = new Instances(inst, 0);
      header.setClassIndex(classIndex);
      classificationOutput.setHeader(header);
      classificationOutput.setBuffer(outBuff);
    }
    String name = (new SimpleDateFormat("HH:mm:ss - ")).format(new Date());
    String cname = "";
          String cmd = "";
    Evaluation eval = null;
    try {
      if (m_CVBut.isSelected()) {
        testMode = 1;
        numFolds = Integer.parseInt(m_CVText.getText());
        if (numFolds <= 1) {
    throw new Exception("Number of folds must be greater than 1");
        }
      } else if (m_PercentBut.isSelected()) {
        testMode = 2;
        percent = Double.parseDouble(m_PercentText.getText());
        if ((percent <= 0) || (percent >= 100)) {
    throw new Exception("Percentage must be between 0 and 100");
        }
      } else if (m_TrainBut.isSelected()) {
        testMode = 3;
      } else if (m_TestSplitBut.isSelected()) {
        testMode = 4;
        // Check the test instance compatibility
        if (source == null) {
          throw new Exception("No user test set has been specified");
        }
       
        if (!(classifier instanceof weka.classifiers.misc.InputMappedClassifier)) {
          if (!inst.equalHeaders(userTestStructure)) {
            boolean wrapClassifier = false;
            if (!Utils.
                getDontShowDialog("weka.gui.explorer.ClassifierPanel.AutoWrapInInputMappedClassifier")) {
              JCheckBox dontShow = new JCheckBox("Do not show this message again");
              Object[] stuff = new Object[2];
              stuff[0] = "Train and test set are not compatible.\n" +
              "Would you like to automatically wrap the classifier in\n" +
              "an \"InputMappedClassifier\" before proceeding?.\n";
              stuff[1] = dontShow;

              int result = JOptionPane.showConfirmDialog(ClassifierPanel.this, stuff,
                  "ClassifierPanel", JOptionPane.YES_OPTION);
             
              if (result == JOptionPane.YES_OPTION) {
                wrapClassifier = true;
              }
             
              if (dontShow.isSelected()) {
                String response = (wrapClassifier) ? "yes" : "no";
                Utils.
                  setDontShowDialogResponse("weka.gui.explorer.ClassifierPanel.AutoWrapInInputMappedClassifier",
                      response);
              }

            } else {
              // What did the user say - do they want to autowrap or not?
              String response =
                Utils.getDontShowDialogResponse("weka.gui.explorer.ClassifierPanel.AutoWrapInInputMappedClassifier");
              if (response != null && response.equalsIgnoreCase("yes")) {
                wrapClassifier = true;
              }
            }

            if (wrapClassifier) {
              weka.classifiers.misc.InputMappedClassifier temp =
                new weka.classifiers.misc.InputMappedClassifier();

              // pass on the known test structure so that we get the
              // correct mapping report from the toString() method
              // of InputMappedClassifier
              temp.setClassifier(classifier);
              temp.setTestStructure(userTestStructure);
              classifier = temp;
            } else {
              throw new Exception("Train and test set are not compatible\n" + inst.equalHeadersMsg(userTestStructure));
            }
          }
        }
             
      } else {
        throw new Exception("Unknown test mode");
      }

      cname = classifier.getClass().getName();
      if (cname.startsWith("weka.classifiers.")) {
        name += cname.substring("weka.classifiers.".length());
      } else {
        name += cname;
      }
      cmd = classifier.getClass().getName();
      if (classifier instanceof OptionHandler)
        cmd += " " + Utils.joinOptions(((OptionHandler) classifier).getOptions());
     
      // set up the structure of the plottable instances for
      // visualization
      plotInstances = ExplorerDefaults.getClassifierErrorsPlotInstances();
      plotInstances.setInstances(inst);
      plotInstances.setClassifier(classifier);
      plotInstances.setClassIndex(inst.classIndex());
      plotInstances.setSaveForVisualization(saveVis);

      // Output some header information
      m_Log.logMessage("Started " + cname);
      m_Log.logMessage("Command: " + cmd);
      if (m_Log instanceof TaskLogger) {
        ((TaskLogger)m_Log).taskStarted();
      }
      outBuff.append("=== Run information ===\n\n");
      outBuff.append("Scheme:       " + cname);
      if (classifier instanceof OptionHandler) {
        String [] o = ((OptionHandler) classifier).getOptions();
        outBuff.append(" " + Utils.joinOptions(o));
      }
      outBuff.append("\n");
      outBuff.append("Relation:     " + inst.relationName() + '\n');
      outBuff.append("Instances:    " + inst.numInstances() + '\n');
      outBuff.append("Attributes:   " + inst.numAttributes() + '\n');
      if (inst.numAttributes() < 100) {
        for (int i = 0; i < inst.numAttributes(); i++) {
    outBuff.append("              " + inst.attribute(i).name()
             + '\n');
        }
      } else {
        outBuff.append("              [list of attributes omitted]\n");
      }

      outBuff.append("Test mode:    ");
      switch (testMode) {
        case 3: // Test on training
    outBuff.append("evaluate on training data\n");
    break;
        case 1: // CV mode
    outBuff.append("" + numFolds + "-fold cross-validation\n");
    break;
        case 2: // Percent split
    outBuff.append("split " + percent
        + "% train, remainder test\n");
    break;
        case 4: // Test on user split
    if (source.isIncremental())
      outBuff.append("user supplied test set: "
          + " size unknown (reading incrementally)\n");
    else
      outBuff.append("user supplied test set: "
          + source.getDataSet().numInstances() + " instances\n");
    break;
      }
            if (costMatrix != null) {
               outBuff.append("Evaluation cost matrix:\n")
               .append(costMatrix.toString()).append("\n");
            }
      outBuff.append("\n");
      m_History.addResult(name, outBuff);
      m_History.setSingle(name);
     
      // Build the model and output it.
      if (outputModel || (testMode == 3) || (testMode == 4)) {
        m_Log.statusMessage("Building model on training data...");

        trainTimeStart = System.currentTimeMillis();
        classifier.buildClassifier(inst);
        trainTimeElapsed = System.currentTimeMillis() - trainTimeStart;
      }

      if (outputModel) {
        outBuff.append("=== Classifier model (full training set) ===\n\n");
        outBuff.append(classifier.toString() + "\n");
        outBuff.append("\nTime taken to build model: " +
           Utils.doubleToString(trainTimeElapsed / 1000.0,2)
           + " seconds\n\n");
        m_History.updateResult(name);
        if (classifier instanceof Drawable) {
    grph = null;
    try {
      grph = ((Drawable)classifier).graph();
    } catch (Exception ex) {
    }
        }
        // copy full model for output
        SerializedObject so = new SerializedObject(classifier);
        fullClassifier = (Classifier) so.getObject();
      }
     
      switch (testMode) {
        case 3: // Test on training
        m_Log.statusMessage("Evaluating on training data...");
        eval = new Evaluation(inst, costMatrix);
       
        // make adjustments if the classifier is an InputMappedClassifier
        eval = setupEval(eval, classifier, inst, costMatrix,
            plotInstances, classificationOutput, false);
       
        //plotInstances.setEvaluation(eval);
              plotInstances.setUp();
       
        if (outputPredictionsText) {
    printPredictionsHeader(outBuff, classificationOutput, "training set");
        }

        for (int jj=0;jj<inst.numInstances();jj++) {
    plotInstances.process(inst.instance(jj), classifier, eval);
   
    if (outputPredictionsText) {
      classificationOutput.printClassification(classifier, inst.instance(jj), jj);
    }
    if ((jj % 100) == 0) {
      m_Log.statusMessage("Evaluating on training data. Processed "
              +jj+" instances...");
    }
        }
        if (outputPredictionsText)
    classificationOutput.printFooter();
        if (outputPredictionsText && classificationOutput.generatesOutput()) {
    outBuff.append("\n");
        }
        outBuff.append("=== Evaluation on training set ===\n");
        break;

        case 1: // CV mode
        m_Log.statusMessage("Randomizing instances...");
        int rnd = 1;
        try {
    rnd = Integer.parseInt(m_RandomSeedText.getText().trim());
    // System.err.println("Using random seed "+rnd);
        } catch (Exception ex) {
    m_Log.logMessage("Trouble parsing random seed value");
    rnd = 1;
        }
        Random random = new Random(rnd);
        inst.randomize(random);
        if (inst.attribute(classIndex).isNominal()) {
    m_Log.statusMessage("Stratifying instances...");
    inst.stratify(numFolds);
        }
        eval = new Evaluation(inst, costMatrix);
       
         // make adjustments if the classifier is an InputMappedClassifier
              eval = setupEval(eval, classifier, inst, costMatrix,
                  plotInstances, classificationOutput, false);
       
//        plotInstances.setEvaluation(eval);
              plotInstances.setUp();
     
        if (outputPredictionsText) {
    printPredictionsHeader(outBuff, classificationOutput, "test data");
        }

        // Make some splits and do a CV
        for (int fold = 0; fold < numFolds; fold++) {
    m_Log.statusMessage("Creating splits for fold "
            + (fold + 1) + "...");
    Instances train = inst.trainCV(numFolds, fold, random);
   
    // make adjustments if the classifier is an InputMappedClassifier
          eval = setupEval(eval, classifier, train, costMatrix,
              plotInstances, classificationOutput, true);
         
//    eval.setPriors(train);
    m_Log.statusMessage("Building model for fold "
            + (fold + 1) + "...");
    Classifier current = null;
    try {
      current = AbstractClassifier.makeCopy(template);
    } catch (Exception ex) {
      m_Log.logMessage("Problem copying classifier: " + ex.getMessage());
    }
    current.buildClassifier(train);
    Instances test = inst.testCV(numFolds, fold);
    m_Log.statusMessage("Evaluating model for fold "
            + (fold + 1) + "...");
    for (int jj=0;jj<test.numInstances();jj++) {
      plotInstances.process(test.instance(jj), current, eval);
      if (outputPredictionsText) {
        classificationOutput.printClassification(current, test.instance(jj), jj);
      }
    }
        }
        if (outputPredictionsText)
    classificationOutput.printFooter();
        if (outputPredictionsText) {
    outBuff.append("\n");
        }
        if (inst.attribute(classIndex).isNominal()) {
    outBuff.append("=== Stratified cross-validation ===\n");
        } else {
    outBuff.append("=== Cross-validation ===\n");
        }
        break;
   
        case 2: // Percent split
        if (!m_PreserveOrderBut.isSelected()) {
    m_Log.statusMessage("Randomizing instances...");
    try {
      rnd = Integer.parseInt(m_RandomSeedText.getText().trim());
    } catch (Exception ex) {
      m_Log.logMessage("Trouble parsing random seed value");
      rnd = 1;
    }
    inst.randomize(new Random(rnd));
        }
        int trainSize = (int) Math.round(inst.numInstances() * percent / 100);
        int testSize = inst.numInstances() - trainSize;
        Instances train = new Instances(inst, 0, trainSize);
        Instances test = new Instances(inst, trainSize, testSize);
        m_Log.statusMessage("Building model on training split ("+trainSize+" instances)...");
        Classifier current = null;
        try {
    current = AbstractClassifier.makeCopy(template);
        } catch (Exception ex) {
    m_Log.logMessage("Problem copying classifier: " + ex.getMessage());
        }
        current.buildClassifier(train);
        eval = new Evaluation(train, costMatrix);
       
        // make adjustments if the classifier is an InputMappedClassifier
              eval = setupEval(eval, classifier, train, costMatrix,
                  plotInstances, classificationOutput, false);
                     
//        plotInstances.setEvaluation(eval);
              plotInstances.setUp();
        m_Log.statusMessage("Evaluating on test split...");
      
        if (outputPredictionsText) {
    printPredictionsHeader(outBuff, classificationOutput, "test split");
        }
    
        for (int jj=0;jj<test.numInstances();jj++) {
    plotInstances.process(test.instance(jj), current, eval);
    if (outputPredictionsText) {
      classificationOutput.printClassification(current, test.instance(jj), jj);
    }
    if ((jj % 100) == 0) {
      m_Log.statusMessage("Evaluating on test split. Processed "
              +jj+" instances...");
    }
        }
        if (outputPredictionsText)
    classificationOutput.printFooter();
        if (outputPredictionsText) {
    outBuff.append("\n");
        }
        outBuff.append("=== Evaluation on test split ===\n");
        break;
   
        case 4: // Test on user split
        m_Log.statusMessage("Evaluating on test data...");
        eval = new Evaluation(inst, costMatrix);
        // make adjustments if the classifier is an InputMappedClassifier
              eval = setupEval(eval, classifier, inst, costMatrix,
                  plotInstances, classificationOutput, false);
             
//        plotInstances.setEvaluation(eval);
              plotInstances.setUp();
       
        if (outputPredictionsText) {
    printPredictionsHeader(outBuff, classificationOutput, "test set");
        }

        Instance instance;
        int jj = 0;
        while (source.hasMoreElements(userTestStructure)) {
    instance = source.nextElement(userTestStructure);
    plotInstances.process(instance, classifier, eval);
    if (outputPredictionsText) {
      classificationOutput.printClassification(classifier, instance, jj);
    }
    if ((++jj % 100) == 0) {
      m_Log.statusMessage("Evaluating on test data. Processed "
          +jj+" instances...");
    }
        }

        if (outputPredictionsText)
    classificationOutput.printFooter();
        if (outputPredictionsText) {
    outBuff.append("\n");
        }
        outBuff.append("=== Evaluation on test set ===\n");
        break;

        default:
        throw new Exception("Test mode not implemented");
      }
     
      if (outputSummary) {
        outBuff.append(eval.toSummaryString(outputEntropy) + "\n");
      }

      if (inst.attribute(classIndex).isNominal()) {

        if (outputPerClass) {
    outBuff.append(eval.toClassDetailsString() + "\n");
        }

        if (outputConfusion) {
    outBuff.append(eval.toMatrixString() + "\n");
        }
      }

            if (   (fullClassifier instanceof Sourcable)
                 && m_OutputSourceCode.isSelected()) {
              outBuff.append("=== Source code ===\n\n");
              outBuff.append(
                Evaluation.wekaStaticWrapper(
                    ((Sourcable) fullClassifier),
                    m_SourceCodeClass.getText()));
            }

      m_History.updateResult(name);
      m_Log.logMessage("Finished " + cname);
      m_Log.statusMessage("OK");
    } catch (Exception ex) {
      ex.printStackTrace();
      m_Log.logMessage(ex.getMessage());
      JOptionPane.showMessageDialog(ClassifierPanel.this,
            "Problem evaluating classifier:\n"
            + ex.getMessage(),
            "Evaluate classifier",
            JOptionPane.ERROR_MESSAGE);
      m_Log.statusMessage("Problem evaluating classifier");
    } finally {
      try {
              if (!saveVis && outputModel) {
      FastVector vv = new FastVector();
      vv.addElement(fullClassifier);
      Instances trainHeader = new Instances(m_Instances, 0);
      trainHeader.setClassIndex(classIndex);
      vv.addElement(trainHeader);
                  if (grph != null) {
        vv.addElement(grph);
      }
      m_History.addObject(name, vv);
              } else if (saveVis && plotInstances != null && plotInstances.getPlotInstances().numInstances() > 0) {
    m_CurrentVis = new VisualizePanel();
    m_CurrentVis.setName(name+" ("+inst.relationName()+")");
    m_CurrentVis.setLog(m_Log);
    m_CurrentVis.addPlot(plotInstances.getPlotData(cname));
    //m_CurrentVis.setColourIndex(plotInstances.getPlotInstances().classIndex()+1);
          m_CurrentVis.setColourIndex(plotInstances.getPlotInstances().classIndex());
    plotInstances.cleanUp();
     
                FastVector vv = new FastVector();
                if (outputModel) {
                  vv.addElement(fullClassifier);
                  Instances trainHeader = new Instances(m_Instances, 0);
                  trainHeader.setClassIndex(classIndex);
                  vv.addElement(trainHeader);
                  if (grph != null) {
                    vv.addElement(grph);
                  }
                }
                vv.addElement(m_CurrentVis);
               
                if ((eval != null) && (eval.predictions() != null)) {
                  vv.addElement(eval.predictions());
                  vv.addElement(inst.classAttribute());
                }
                m_History.addObject(name, vv);
        }
      } catch (Exception ex) {
        ex.printStackTrace();
      }
     
      if (isInterrupted()) {
        m_Log.logMessage("Interrupted " + cname);
        m_Log.statusMessage("Interrupted");
      }

      synchronized (this) {
        m_StartBut.setEnabled(true);
        m_StopBut.setEnabled(false);
        m_RunThread = null;
      }
      if (m_Log instanceof TaskLogger) {
              ((TaskLogger)m_Log).taskFinished();
            }
          }
  }
      };
      m_RunThread.setPriority(Thread.MIN_PRIORITY);
      m_RunThread.start();
    }
  }

  /**
   * Handles constructing a popup menu with visualization options.
   * @param name the name of the result history list entry clicked on by
   * the user
   * @param x the x coordinate for popping up the menu
   * @param y the y coordinate for popping up the menu
   */
  protected void visualize(String name, int x, int y) {
    final String selectedName = name;
    JPopupMenu resultListMenu = new JPopupMenu();
   
    JMenuItem visMainBuffer = new JMenuItem("View in main window");
    if (selectedName != null) {
      visMainBuffer.addActionListener(new ActionListener() {
    public void actionPerformed(ActionEvent e) {
      m_History.setSingle(selectedName);
    }
  });
    } else {
      visMainBuffer.setEnabled(false);
    }
    resultListMenu.add(visMainBuffer);
   
    JMenuItem visSepBuffer = new JMenuItem("View in separate window");
    if (selectedName != null) {
      visSepBuffer.addActionListener(new ActionListener() {
  public void actionPerformed(ActionEvent e) {
    m_History.openFrame(selectedName);
  }
      });
    } else {
      visSepBuffer.setEnabled(false);
    }
    resultListMenu.add(visSepBuffer);
   
    JMenuItem saveOutput = new JMenuItem("Save result buffer");
    if (selectedName != null) {
      saveOutput.addActionListener(new ActionListener() {
    public void actionPerformed(ActionEvent e) {
      saveBuffer(selectedName);
    }
  });
    } else {
      saveOutput.setEnabled(false);
    }
    resultListMenu.add(saveOutput);
   
    JMenuItem deleteOutput = new JMenuItem("Delete result buffer");
    if (selectedName != null) {
      deleteOutput.addActionListener(new ActionListener() {
  public void actionPerformed(ActionEvent e) {
    m_History.removeResult(selectedName);
  }
      });
    } else {
      deleteOutput.setEnabled(false);
    }
    resultListMenu.add(deleteOutput);

    resultListMenu.addSeparator();
   
    JMenuItem loadModel = new JMenuItem("Load model");
    loadModel.addActionListener(new ActionListener() {
  public void actionPerformed(ActionEvent e) {
    loadClassifier();
  }
      });
    resultListMenu.add(loadModel);

    FastVector o = null;
    if (selectedName != null) {
      o = (FastVector)m_History.getNamedObject(selectedName);
    }

    VisualizePanel temp_vp = null;
    String temp_grph = null;
    FastVector temp_preds = null;
    Attribute temp_classAtt = null;
    Classifier temp_classifier = null;
    Instances temp_trainHeader = null;
     
    if (o != null) {
      for (int i = 0; i < o.size(); i++) {
  Object temp = o.elementAt(i);
  if (temp instanceof Classifier) {
    temp_classifier = (Classifier)temp;
  } else if (temp instanceof Instances) { // training header
    temp_trainHeader = (Instances)temp;
  } else if (temp instanceof VisualizePanel) { // normal errors
    temp_vp = (VisualizePanel)temp;
  } else if (temp instanceof String) { // graphable output
    temp_grph = (String)temp;
  } else if (temp instanceof FastVector) { // predictions
    temp_preds = (FastVector)temp;
  } else if (temp instanceof Attribute) { // class attribute
    temp_classAtt = (Attribute)temp;
  }
      }
    }

    final VisualizePanel vp = temp_vp;
    final String grph = temp_grph;
    final FastVector preds = temp_preds;
    final Attribute classAtt = temp_classAtt;
    final Classifier classifier = temp_classifier;
    final Instances trainHeader = temp_trainHeader;
   
    JMenuItem saveModel = new JMenuItem("Save model");
    if (classifier != null) {
      saveModel.addActionListener(new ActionListener() {
    public void actionPerformed(ActionEvent e) {
      saveClassifier(selectedName, classifier, trainHeader);
    }
  });
    } else {
      saveModel.setEnabled(false);
    }
    resultListMenu.add(saveModel);

    JMenuItem reEvaluate =
      new JMenuItem("Re-evaluate model on current test set");
    if (classifier != null && m_TestLoader != null) {
      reEvaluate.addActionListener(new ActionListener() {
    public void actionPerformed(ActionEvent e) {
      reevaluateModel(selectedName, classifier, trainHeader);
    }
  });
    } else {
      reEvaluate.setEnabled(false);
    }
    resultListMenu.add(reEvaluate);
   
    resultListMenu.addSeparator();
   
    JMenuItem visErrors = new JMenuItem("Visualize classifier errors");
    if (vp != null) {
      if ((vp.getXIndex() == 0) && (vp.getYIndex() == 1)) {
  try {
    vp.setXIndex(vp.getInstances().classIndex())// class
    vp.setYIndex(vp.getInstances().classIndex() - 1)// predicted class
  }
  catch (Exception e) {
    // ignored
  }
      }
      visErrors.addActionListener(new ActionListener() {
    public void actionPerformed(ActionEvent e) {
      visualizeClassifierErrors(vp);
    }
  });
    } else {
      visErrors.setEnabled(false);
    }
    resultListMenu.add(visErrors);

    JMenuItem visGrph = new JMenuItem("Visualize tree");
    if (grph != null) {
  if(((Drawable)temp_classifier).graphType()==Drawable.TREE) {
      visGrph.addActionListener(new ActionListener() {
        public void actionPerformed(ActionEvent e) {
      String title;
      if (vp != null) title = vp.getName();
      else title = selectedName;
      visualizeTree(grph, title);
        }
    });
  }
  else if(((Drawable)temp_classifier).graphType()==Drawable.BayesNet) {
      visGrph.setText("Visualize graph");
      visGrph.addActionListener(new ActionListener() {
        public void actionPerformed(ActionEvent e) {
      Thread th = new Thread() {
        public void run() {
        visualizeBayesNet(grph, selectedName);
        }
          };
      th.start();
        }
    });
  }
  else
      visGrph.setEnabled(false);
    } else {
      visGrph.setEnabled(false);
    }
    resultListMenu.add(visGrph);

    JMenuItem visMargin = new JMenuItem("Visualize margin curve");
    if ((preds != null) && (classAtt != null) && (classAtt.isNominal())) {
      visMargin.addActionListener(new ActionListener() {
    public void actionPerformed(ActionEvent e) {
      try {
        MarginCurve tc = new MarginCurve();
        Instances result = tc.getCurve(preds);
        VisualizePanel vmc = new VisualizePanel();
        vmc.setName(result.relationName());
        vmc.setLog(m_Log);
        PlotData2D tempd = new PlotData2D(result);
        tempd.setPlotName(result.relationName());
        tempd.addInstanceNumberAttribute();
        vmc.addPlot(tempd);
        visualizeClassifierErrors(vmc);
      } catch (Exception ex) {
        ex.printStackTrace();
      }
    }
  });
    } else {
      visMargin.setEnabled(false);
    }
    resultListMenu.add(visMargin);

    JMenu visThreshold = new JMenu("Visualize threshold curve");
    if ((preds != null) && (classAtt != null) && (classAtt.isNominal())) {
      for (int i = 0; i < classAtt.numValues(); i++) {
  JMenuItem clv = new JMenuItem(classAtt.value(i));
  final int classValue = i;
  clv.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e) {
        try {
    ThresholdCurve tc = new ThresholdCurve();
    Instances result = tc.getCurve(preds, classValue);
    //VisualizePanel vmc = new VisualizePanel();
    ThresholdVisualizePanel vmc = new ThresholdVisualizePanel();
    vmc.setROCString("(Area under ROC = " +
         Utils.doubleToString(ThresholdCurve.getROCArea(result), 4) + ")");
    vmc.setLog(m_Log);
    vmc.setName(result.relationName()+". (Class value "+
          classAtt.value(classValue)+")");
    PlotData2D tempd = new PlotData2D(result);
    tempd.setPlotName(result.relationName());
    tempd.addInstanceNumberAttribute();
    // specify which points are connected
    boolean[] cp = new boolean[result.numInstances()];
    for (int n = 1; n < cp.length; n++)
      cp[n] = true;
    tempd.setConnectPoints(cp);
    // add plot
    vmc.addPlot(tempd);
    visualizeClassifierErrors(vmc);
        } catch (Exception ex) {
    ex.printStackTrace();
        }
        }
    });
    visThreshold.add(clv);
      }
    } else {
      visThreshold.setEnabled(false);
    }
    resultListMenu.add(visThreshold);
   
    JMenu visCostBenefit = new JMenu("Cost/Benefit analysis");
    if ((preds != null) && (classAtt != null) && (classAtt.isNominal())) {
      for (int i = 0; i < classAtt.numValues(); i++) {
        JMenuItem clv = new JMenuItem(classAtt.value(i));
        final int classValue = i;
        clv.addActionListener(new ActionListener() {
            public void actionPerformed(ActionEvent e) {
              try {
                ThresholdCurve tc = new ThresholdCurve();
                Instances result = tc.getCurve(preds, classValue);

                // Create a dummy class attribute with the chosen
                // class value as index 0 (if necessary).
                Attribute classAttToUse = classAtt;
                if (classValue != 0) {
                  FastVector newNames = new FastVector();
                  newNames.addElement(classAtt.value(classValue));
                  for (int k = 0; k < classAtt.numValues(); k++) {
                    if (k != classValue) {
                      newNames.addElement(classAtt.value(k));
                    }
                  }
                  classAttToUse = new Attribute(classAtt.name(), newNames);
                }
               
                CostBenefitAnalysis cbAnalysis = new CostBenefitAnalysis();
               
                PlotData2D tempd = new PlotData2D(result);
                tempd.setPlotName(result.relationName());
                tempd.m_alwaysDisplayPointsOfThisSize = 10;
                // specify which points are connected
                boolean[] cp = new boolean[result.numInstances()];
                for (int n = 1; n < cp.length; n++)
                  cp[n] = true;
                tempd.setConnectPoints(cp);
               
                String windowTitle = "";
                if (classifier != null) {
                  String cname = classifier.getClass().getName();
                  if (cname.startsWith("weka.classifiers.")) {
                    windowTitle = "" + cname.substring("weka.classifiers.".length()) + " ";
                  }
                }
                windowTitle += " (class = " + classAttToUse.value(0) + ")";               
               
                // add plot
                cbAnalysis.setCurveData(tempd, classAttToUse);
                visualizeCostBenefitAnalysis(cbAnalysis, windowTitle);
              } catch (Exception ex) {
                ex.printStackTrace();
              }
              }
          });
          visCostBenefit.add(clv);
      }
    } else {
      visCostBenefit.setEnabled(false);
    }
    resultListMenu.add(visCostBenefit);

    JMenu visCost = new JMenu("Visualize cost curve");
    if ((preds != null) && (classAtt != null) && (classAtt.isNominal())) {
      for (int i = 0; i < classAtt.numValues(); i++) {
  JMenuItem clv = new JMenuItem(classAtt.value(i));
  final int classValue = i;
  clv.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e) {
        try {
    CostCurve cc = new CostCurve();
    Instances result = cc.getCurve(preds, classValue);
    VisualizePanel vmc = new VisualizePanel();
    vmc.setLog(m_Log);
    vmc.setName(result.relationName()+". (Class value "+
          classAtt.value(classValue)+")");
    PlotData2D tempd = new PlotData2D(result);
    tempd.m_displayAllPoints = true;
    tempd.setPlotName(result.relationName());
    boolean [] connectPoints =
      new boolean [result.numInstances()];
    for (int jj = 1; jj < connectPoints.length; jj+=2) {
      connectPoints[jj] = true;
    }
    tempd.setConnectPoints(connectPoints);
    //      tempd.addInstanceNumberAttribute();
    vmc.addPlot(tempd);
    visualizeClassifierErrors(vmc);
        } catch (Exception ex) {
    ex.printStackTrace();
        }
      }
    });
  visCost.add(clv);
      }
    } else {
      visCost.setEnabled(false);
    }
    resultListMenu.add(visCost);
   
    // visualization plugins
    JMenu visPlugins = new JMenu("Plugins");
    boolean availablePlugins = false;
   
    // predictions
    Vector pluginsVector = GenericObjectEditor.getClassnames(VisualizePlugin.class.getName());
    for (int i = 0; i < pluginsVector.size(); i++) {
      String className = (String) (pluginsVector.elementAt(i));
      try {
        VisualizePlugin plugin = (VisualizePlugin) Class.forName(className).newInstance();
        if (plugin == null)
          continue;
        availablePlugins = true;
        JMenuItem pluginMenuItem = plugin.getVisualizeMenuItem(preds, classAtt);
        Version version = new Version();
        if (pluginMenuItem != null) {
          /*if (version.compareTo(plugin.getMinVersion()) < 0)
            pluginMenuItem.setText(pluginMenuItem.getText() + " (weka outdated)");
          if (version.compareTo(plugin.getMaxVersion()) >= 0)
            pluginMenuItem.setText(pluginMenuItem.getText() + " (plugin outdated)"); */
          visPlugins.add(pluginMenuItem);
        }
      }
      catch (Exception e) {
    //e.printStackTrace();
      }
    }
   
    // errros
    pluginsVector = GenericObjectEditor.getClassnames(ErrorVisualizePlugin.class.getName());
    for (int i = 0; i < pluginsVector.size(); i++) {
      String className = (String) (pluginsVector.elementAt(i));
      try {
        ErrorVisualizePlugin plugin = (ErrorVisualizePlugin) Class.forName(className).newInstance();
        if (plugin == null)
          continue;
        availablePlugins = true;
        JMenuItem pluginMenuItem = plugin.getVisualizeMenuItem(vp.getInstances());
        Version version = new Version();
        if (pluginMenuItem != null) {
          /*if (version.compareTo(plugin.getMinVersion()) < 0)
            pluginMenuItem.setText(pluginMenuItem.getText() + " (weka outdated)");
          if (version.compareTo(plugin.getMaxVersion()) >= 0)
            pluginMenuItem.setText(pluginMenuItem.getText() + " (plugin outdated)"); */
          visPlugins.add(pluginMenuItem);
        }
      }
      catch (Exception e) {
    //e.printStackTrace();
      }
    }
   
    // graphs+trees
    if (grph != null) {
      // trees
      if (((Drawable) temp_classifier).graphType() == Drawable.TREE) {
  pluginsVector = GenericObjectEditor.getClassnames(TreeVisualizePlugin.class.getName());
  for (int i = 0; i < pluginsVector.size(); i++) {
    String className = (String) (pluginsVector.elementAt(i));
    try {
      TreeVisualizePlugin plugin = (TreeVisualizePlugin) Class.forName(className).newInstance();
      if (plugin == null)
        continue;
      availablePlugins = true;
      JMenuItem pluginMenuItem = plugin.getVisualizeMenuItem(grph, selectedName);
      Version version = new Version();
      if (pluginMenuItem != null) {
        /*if (version.compareTo(plugin.getMinVersion()) < 0)
    pluginMenuItem.setText(pluginMenuItem.getText() + " (weka outdated)");
        if (version.compareTo(plugin.getMaxVersion()) >= 0)
    pluginMenuItem.setText(pluginMenuItem.getText() + " (plugin outdated)"); */
        visPlugins.add(pluginMenuItem);
      }
    }
    catch (Exception e) {
      //e.printStackTrace();
    }
  }
      }
      // graphs
      else {
  pluginsVector = GenericObjectEditor.getClassnames(GraphVisualizePlugin.class.getName());
  for (int i = 0; i < pluginsVector.size(); i++) {
    String className = (String) (pluginsVector.elementAt(i));
    try {
      GraphVisualizePlugin plugin = (GraphVisualizePlugin) Class.forName(className).newInstance();
      if (plugin == null)
        continue;
      availablePlugins = true;
      JMenuItem pluginMenuItem = plugin.getVisualizeMenuItem(grph, selectedName);
      Version version = new Version();
      if (pluginMenuItem != null) {
        /*if (version.compareTo(plugin.getMinVersion()) < 0)
    pluginMenuItem.setText(pluginMenuItem.getText() + " (weka outdated)");
        if (version.compareTo(plugin.getMaxVersion()) >= 0)
    pluginMenuItem.setText(pluginMenuItem.getText() + " (plugin outdated)"); */
        visPlugins.add(pluginMenuItem);
      }
    }
    catch (Exception e) {
      //e.printStackTrace();
    }
  }
      }
    }

    if (availablePlugins)
      resultListMenu.add(visPlugins);

    resultListMenu.show(m_History.getList(), x, y);
  }

  /**
   * Pops up a TreeVisualizer for the classifier from the currently
   * selected item in the results list.
   *
   * @param dottyString the description of the tree in dotty format
   * @param treeName the title to assign to the display
   */
  protected void visualizeTree(String dottyString, String treeName) {
    final javax.swing.JFrame jf =
      new javax.swing.JFrame("Weka Classifier Tree Visualizer: "+treeName);
    jf.setSize(500,400);
    jf.getContentPane().setLayout(new BorderLayout());
    TreeVisualizer tv = new TreeVisualizer(null,
             dottyString,
             new PlaceNode2());
    jf.getContentPane().add(tv, BorderLayout.CENTER);
    jf.addWindowListener(new java.awt.event.WindowAdapter() {
  public void windowClosing(java.awt.event.WindowEvent e) {
    jf.dispose();
  }
      });
   
    jf.setVisible(true);
    tv.fitToScreen();
  }

  /**
   * Pops up a GraphVisualizer for the BayesNet classifier from the currently
   * selected item in the results list.
   *
   * @param XMLBIF the description of the graph in XMLBIF ver. 0.3
   * @param graphName the name of the graph
   */
  protected void visualizeBayesNet(String XMLBIF, String graphName) {
    final javax.swing.JFrame jf =
      new javax.swing.JFrame("Weka Classifier Graph Visualizer: "+graphName);
    jf.setSize(500,400);
    jf.getContentPane().setLayout(new BorderLayout());
    GraphVisualizer gv = new GraphVisualizer();
    try { gv.readBIF(XMLBIF);
    }
    catch(BIFFormatException be) { System.err.println("unable to visualize BayesNet"); be.printStackTrace(); }
    gv.layoutGraph();

    jf.getContentPane().add(gv, BorderLayout.CENTER);
    jf.addWindowListener(new java.awt.event.WindowAdapter() {
  public void windowClosing(java.awt.event.WindowEvent e) {
    jf.dispose();
  }
      });
   
    jf.setVisible(true);
  }
 
  /**
   * Pops up the Cost/Benefit analysis panel.
   *
   * @param cb the CostBenefitAnalysis panel to pop up
   */
  protected void visualizeCostBenefitAnalysis(CostBenefitAnalysis cb,
      String classifierAndRelationName) {
    if (cb != null) {
      String windowTitle = "Weka Classifier: Cost/Benefit Analysis ";
      if (classifierAndRelationName != null) {
        windowTitle += "- " + classifierAndRelationName;
      }
      final javax.swing.JFrame jf =
        new javax.swing.JFrame(windowTitle);
        jf.setSize(1000,600);
        jf.getContentPane().setLayout(new BorderLayout());

        jf.getContentPane().add(cb, BorderLayout.CENTER);
        jf.addWindowListener(new java.awt.event.WindowAdapter() {
          public void windowClosing(java.awt.event.WindowEvent e) {
            jf.dispose();
          }
        });

    jf.setVisible(true);
    }
  }


  /**
   * Pops up a VisualizePanel for visualizing the data and errors for
   * the classifier from the currently selected item in the results list.
   *
   * @param sp the VisualizePanel to pop up.
   */
  protected void visualizeClassifierErrors(VisualizePanel sp) {
  
    if (sp != null) {
      String plotName = sp.getName();
  final javax.swing.JFrame jf =
  new javax.swing.JFrame("Weka Classifier Visualize: "+plotName);
  jf.setSize(600,400);
  jf.getContentPane().setLayout(new BorderLayout());

  jf.getContentPane().add(sp, BorderLayout.CENTER);
  jf.addWindowListener(new java.awt.event.WindowAdapter() {
    public void windowClosing(java.awt.event.WindowEvent e) {
      jf.dispose();
    }
  });

    jf.setVisible(true);
    }
  }

  /**
   * Save the currently selected classifier output to a file.
   * @param name the name of the buffer to save
   */
  protected void saveBuffer(String name) {
    StringBuffer sb = m_History.getNamedBuffer(name);
    if (sb != null) {
      if (m_SaveOut.save(sb)) {
  m_Log.logMessage("Save successful.");
      }
    }
  }
 

  /**
   * Stops the currently running classifier (if any).
   */
  protected void stopClassifier() {

    if (m_RunThread != null) {
      m_RunThread.interrupt();
     
      // This is deprecated (and theoretically the interrupt should do).
      m_RunThread.stop();
    }
  }

  /**
   * Saves the currently selected classifier.
   *
   * @param name the name of the run
   * @param classifier the classifier to save
   * @param trainHeader the header of the training instances
   */
  protected void saveClassifier(String name, Classifier classifier,
        Instances trainHeader) {

    File sFile = null;
    boolean saveOK = true;
    int returnVal = m_FileChooser.showSaveDialog(this);
    if (returnVal == JFileChooser.APPROVE_OPTION) {
      sFile = m_FileChooser.getSelectedFile();
      if (!sFile.getName().toLowerCase().endsWith(MODEL_FILE_EXTENSION)) {
  sFile = new File(sFile.getParent(), sFile.getName()
       + MODEL_FILE_EXTENSION);
      }
      m_Log.statusMessage("Saving model to file...");
     
      try {
  OutputStream os = new FileOutputStream(sFile);
  if (sFile.getName().endsWith(".gz")) {
    os = new GZIPOutputStream(os);
  }
  ObjectOutputStream objectOutputStream = new ObjectOutputStream(os);
  objectOutputStream.writeObject(classifier);
  if (trainHeader != null) objectOutputStream.writeObject(trainHeader);
  objectOutputStream.flush();
  objectOutputStream.close();
      } catch (Exception e) {
 
  JOptionPane.showMessageDialog(null, e, "Save Failed",
              JOptionPane.ERROR_MESSAGE);
  saveOK = false;
      }
      if (saveOK)
  m_Log.logMessage("Saved model (" + name
       + ") to file '" + sFile.getName() + "'");
      m_Log.statusMessage("OK");
    }
  }

  /**
   * Loads a classifier.
   */
  protected void loadClassifier() {

    int returnVal = m_FileChooser.showOpenDialog(this);
    if (returnVal == JFileChooser.APPROVE_OPTION) {
      File selected = m_FileChooser.getSelectedFile();
      Classifier classifier = null;
      Instances trainHeader = null;

      m_Log.statusMessage("Loading model from file...");

      try {
  InputStream is = new FileInputStream(selected);
  if (selected.getName().endsWith(PMML_FILE_EXTENSION)) {
    PMMLModel model = PMMLFactory.getPMMLModel(is, m_Log);
    if (model instanceof PMMLClassifier) {
      classifier = (PMMLClassifier)model;
      /*trainHeader =
        ((PMMLClassifier)classifier).getMiningSchema().getMiningSchemaAsInstances(); */
    } else {
      throw new Exception("PMML model is not a classification/regression model!");
    }
  } else {
  if (selected.getName().endsWith(".gz")) {
    is = new GZIPInputStream(is);
  }
  ObjectInputStream objectInputStream = new ObjectInputStream(is);
  classifier = (Classifier) objectInputStream.readObject();
  try { // see if we can load the header
    trainHeader = (Instances) objectInputStream.readObject();
  } catch (Exception e) {} // don't fuss if we can't
  objectInputStream.close();
  }
      } catch (Exception e) {
 
  JOptionPane.showMessageDialog(null, e, "Load Failed",
              JOptionPane.ERROR_MESSAGE);
     

      m_Log.statusMessage("OK");
     
      if (classifier != null) {
  m_Log.logMessage("Loaded model from file '" + selected.getName()+ "'");
  String name = (new SimpleDateFormat("HH:mm:ss - ")).format(new Date());
  String cname = classifier.getClass().getName();
  if (cname.startsWith("weka.classifiers."))
    cname = cname.substring("weka.classifiers.".length());
  name += cname + " from file '" + selected.getName() + "'";
  StringBuffer outBuff = new StringBuffer();

  outBuff.append("=== Model information ===\n\n");
  outBuff.append("Filename:     " + selected.getName() + "\n");
  outBuff.append("Scheme:       " + classifier.getClass().getName());
  if (classifier instanceof OptionHandler) {
    String [] o = ((OptionHandler) classifier).getOptions();
    outBuff.append(" " + Utils.joinOptions(o));
  }
  outBuff.append("\n");
  if (trainHeader != null) {
    outBuff.append("Relation:     " + trainHeader.relationName() + '\n');
    outBuff.append("Attributes:   " + trainHeader.numAttributes() + '\n');
    if (trainHeader.numAttributes() < 100) {
      for (int i = 0; i < trainHeader.numAttributes(); i++) {
        outBuff.append("              " + trainHeader.attribute(i).name()
           + '\n');
      }
    } else {
      outBuff.append("              [list of attributes omitted]\n");
    }
  } else {
    outBuff.append("\nTraining data unknown\n");
  }

  outBuff.append("\n=== Classifier model ===\n\n");
  outBuff.append(classifier.toString() + "\n");
 
  m_History.addResult(name, outBuff);
  m_History.setSingle(name);
  FastVector vv = new FastVector();
  vv.addElement(classifier);
  if (trainHeader != null) vv.addElement(trainHeader);
  // allow visualization of graphable classifiers
  String grph = null;
  if (classifier instanceof Drawable) {
    try {
      grph = ((Drawable)classifier).graph();
    } catch (Exception ex) {
    }
  }
  if (grph != null) vv.addElement(grph);
 
  m_History.addObject(name, vv);
      }
    }
  }
 
  /**
   * Re-evaluates the named classifier with the current test set. Unpredictable
   * things will happen if the data set is not compatible with the classifier.
   *
   * @param name the name of the classifier entry
   * @param classifier the classifier to evaluate
   * @param trainHeader the header of the training set
   */
  protected void reevaluateModel(final String name,
                                 final Classifier classifier,
                                 final Instances trainHeader) {

    if (m_RunThread == null) {
      synchronized (this) {
  m_StartBut.setEnabled(false);
  m_StopBut.setEnabled(true);
      }
      m_RunThread = new Thread() {
          public void run() {
            // Copy the current state of things
            m_Log.statusMessage("Setting up...");
            Classifier classifierToUse = classifier;

            StringBuffer outBuff = m_History.getNamedBuffer(name);
            DataSource source = null;
            Instances userTestStructure = null;
            ClassifierErrorsPlotInstances plotInstances = null;

            CostMatrix costMatrix = null;
            if (m_EvalWRTCostsBut.isSelected()) {
              costMatrix = new CostMatrix((CostMatrix) m_CostMatrixEditor
                                          .getValue());
            }   
            boolean outputConfusion = m_OutputConfusionBut.isSelected();
            boolean outputPerClass = m_OutputPerClassBut.isSelected();
            boolean outputSummary = true;
            boolean outputEntropy = m_OutputEntropyBut.isSelected();
            boolean saveVis = m_StorePredictionsBut.isSelected();
            boolean outputPredictionsText = (m_ClassificationOutputEditor.getValue().getClass() != Null.class);
            String grph = null;   
            Evaluation eval = null;

            try {

              boolean incrementalLoader = (m_TestLoader instanceof IncrementalConverter);
              if (m_TestLoader != null && m_TestLoader.getStructure() != null) {
                m_TestLoader.reset();
                source = new DataSource(m_TestLoader);
                userTestStructure = source.getStructure();
                userTestStructure.setClassIndex(m_TestClassIndex);
              }
              // Check the test instance compatibility
              if (source == null) {
                throw new Exception("No user test set has been specified");
              }
              if (trainHeader != null) {
                boolean compatibilityProblem = false;
                if (trainHeader.classIndex() >
                    userTestStructure.numAttributes()-1) {
                  compatibilityProblem = true;
                  //throw new Exception("Train and test set are not compatible");
                }
                userTestStructure.setClassIndex(trainHeader.classIndex());
                if (!trainHeader.equalHeaders(userTestStructure)) {
                  compatibilityProblem = true;
                  // throw new Exception("Train and test set are not compatible:\n" + trainHeader.equalHeadersMsg(userTestStructure));
                 
                  if (compatibilityProblem &&
                      !(classifierToUse instanceof weka.classifiers.misc.InputMappedClassifier)) {

                    boolean wrapClassifier = false;
                    if (!Utils.
                        getDontShowDialog("weka.gui.explorer.ClassifierPanel.AutoWrapInInputMappedClassifier")) {
                      JCheckBox dontShow = new JCheckBox("Do not show this message again");
                      Object[] stuff = new Object[2];
                      stuff[0] = "Data used to train model and test set are not compatible.\n" +
                      "Would you like to automatically wrap the classifier in\n" +
                      "an \"InputMappedClassifier\" before proceeding?.\n";
                      stuff[1] = dontShow;

                      int result = JOptionPane.showConfirmDialog(ClassifierPanel.this, stuff,
                          "ClassifierPanel", JOptionPane.YES_OPTION);
                     
                      if (result == JOptionPane.YES_OPTION) {
                        wrapClassifier = true;
                      }
                     
                      if (dontShow.isSelected()) {
                        String response = (wrapClassifier) ? "yes" : "no";
                        Utils.
                          setDontShowDialogResponse("weka.gui.explorer.ClassifierPanel.AutoWrapInInputMappedClassifier",
                              response);
                      }

                    } else {
                      // What did the user say - do they want to autowrap or not?
                      String response =
                        Utils.getDontShowDialogResponse("weka.gui.explorer.ClassifierPanel.AutoWrapInInputMappedClassifier");
                      if (response != null && response.equalsIgnoreCase("yes")) {
                        wrapClassifier = true;
                      }
                    }

                    if (wrapClassifier) {
                      weka.classifiers.misc.InputMappedClassifier temp =
                        new weka.classifiers.misc.InputMappedClassifier();

                      temp.setClassifier(classifierToUse);
                      temp.setModelHeader(trainHeader);
                      classifierToUse = temp;
                    } else {
                      throw new Exception("Train and test set are not compatible\n" +
                          trainHeader.equalHeadersMsg(userTestStructure));
                    }
                  }
                }
              } else {
          if (classifierToUse instanceof PMMLClassifier) {
            // set the class based on information in the mining schema
            Instances miningSchemaStructure =
              ((PMMLClassifier)classifierToUse).getMiningSchema().getMiningSchemaAsInstances();
            String className = miningSchemaStructure.classAttribute().name();
            Attribute classMatch = userTestStructure.attribute(className);
            if (classMatch == null) {
              throw new Exception("Can't find a match for the PMML target field "
            + className + " in the "
            + "test instances!");
            }
            userTestStructure.setClass(classMatch);
          } else {
            userTestStructure.
              setClassIndex(userTestStructure.numAttributes()-1);
          }
              }
              if (m_Log instanceof TaskLogger) {
                ((TaskLogger)m_Log).taskStarted();
              }
              m_Log.statusMessage("Evaluating on test data...");
              m_Log.logMessage("Re-evaluating classifier (" + name
                               + ") on test set");
              eval = new Evaluation(userTestStructure, costMatrix);
     
              // set up the structure of the plottable instances for
              // visualization if selected
              if (saveVis) {
          plotInstances = new ClassifierErrorsPlotInstances();
          plotInstances.setInstances(userTestStructure);
          plotInstances.setClassifier(classifierToUse);
          plotInstances.setClassIndex(userTestStructure.classIndex());
          plotInstances.setEvaluation(eval);
          plotInstances.setUp();
              }
             
     
              outBuff.append("\n=== Re-evaluation on test set ===\n\n");
              outBuff.append("User supplied test set\n")
              outBuff.append("Relation:     "
                             + userTestStructure.relationName() + '\n');
              if (incrementalLoader)
          outBuff.append("Instances:     unknown (yet). Reading incrementally\n");
              else
          outBuff.append("Instances:    " + source.getDataSet().numInstances() + "\n");
              outBuff.append("Attributes:   "
            + userTestStructure.numAttributes()
            + "\n\n");
              if (trainHeader == null &&
                  !(classifierToUse instanceof
                      weka.classifiers.pmml.consumer.PMMLClassifier)) {
                outBuff.append("NOTE - if test set is not compatible then results are "
                               + "unpredictable\n\n");
              }

              AbstractOutput classificationOutput = null;
              if (outputPredictionsText) {
          classificationOutput = (AbstractOutput) m_ClassificationOutputEditor.getValue();
          classificationOutput.setHeader(userTestStructure);
          classificationOutput.setBuffer(outBuff);
/*          classificationOutput.setAttributes("");
          classificationOutput.setOutputDistribution(false);*/
//          classificationOutput.printHeader();         
              }
             
              // make adjustments if the classifier is an InputMappedClassifier
              eval = setupEval(eval, classifierToUse, userTestStructure, costMatrix,
                  plotInstances, classificationOutput, false);
              eval.useNoPriors();
             
              if (outputPredictionsText) {
                printPredictionsHeader(outBuff, classificationOutput, "user test set");
              }

        Instance instance;
        int jj = 0;
        while (source.hasMoreElements(userTestStructure)) {
    instance = source.nextElement(userTestStructure);
    plotInstances.process(instance, classifierToUse, eval);
    if (outputPredictionsText) {
      classificationOutput.printClassification(classifierToUse, instance, jj);
    }
    if ((++jj % 100) == 0) {
      m_Log.statusMessage("Evaluating on test data. Processed "
          +jj+" instances...");
    }
        }

        if (outputPredictionsText)
    classificationOutput.printFooter();
              if (outputPredictionsText && classificationOutput.generatesOutput()) {
                outBuff.append("\n");
              }
     
              if (outputSummary) {
                outBuff.append(eval.toSummaryString(outputEntropy) + "\n");
              }
     
              if (userTestStructure.classAttribute().isNominal()) {
 
                if (outputPerClass) {
                  outBuff.append(eval.toClassDetailsString() + "\n");
                }
 
                if (outputConfusion) {
                  outBuff.append(eval.toMatrixString() + "\n");
                }
              }
     
              m_History.updateResult(name);
              m_Log.logMessage("Finished re-evaluation");
              m_Log.statusMessage("OK");
            } catch (Exception ex) {
              ex.printStackTrace();
              m_Log.logMessage(ex.getMessage());
              m_Log.statusMessage("See error log");

              ex.printStackTrace();
              m_Log.logMessage(ex.getMessage());
              JOptionPane.showMessageDialog(ClassifierPanel.this,
                                            "Problem evaluating classifier:\n"
                                            + ex.getMessage(),
                                            "Evaluate classifier",
                                            JOptionPane.ERROR_MESSAGE);
              m_Log.statusMessage("Problem evaluating classifier");
            } finally {
              try {
          if (classifierToUse instanceof PMMLClassifier) {
            // signal the end of the scoring run so
            // that the initialized state can be reset
            // (forces the field mapping to be recomputed
            // for the next scoring run).
            ((PMMLClassifier)classifierToUse).done();
          }
         
                if (plotInstances != null && plotInstances.getPlotInstances().numInstances() > 0) {
                  m_CurrentVis = new VisualizePanel();
                  m_CurrentVis.setName(name + " (" + userTestStructure.relationName() + ")");
                  m_CurrentVis.setLog(m_Log);
                  m_CurrentVis.addPlot(plotInstances.getPlotData(name));
                  //m_CurrentVis.setColourIndex(plotInstances.getPlotInstances().classIndex()+1);
                  m_CurrentVis.setColourIndex(plotInstances.getPlotInstances().classIndex());
                  plotInstances.cleanUp();
   
                  if (classifierToUse instanceof Drawable) {
                    try {
                      grph = ((Drawable)classifierToUse).graph();
                    } catch (Exception ex) {
                    }
                  }

                  if (saveVis) {
                    FastVector vv = new FastVector();
                    vv.addElement(classifier);
                    if (trainHeader != null) vv.addElement(trainHeader);
                    vv.addElement(m_CurrentVis);
                    if (grph != null) {
                      vv.addElement(grph);
                    }
                    if ((eval != null) && (eval.predictions() != null)) {
                      vv.addElement(eval.predictions());
                      vv.addElement(userTestStructure.classAttribute());
                    }
                    m_History.addObject(name, vv);
                  } else {
                    FastVector vv = new FastVector();
                    vv.addElement(classifierToUse);
                    if (trainHeader != null) vv.addElement(trainHeader);
                    m_History.addObject(name, vv);
                  }
                }
              } catch (Exception ex) {
                ex.printStackTrace();
              }
              if (isInterrupted()) {
                m_Log.logMessage("Interrupted reevaluate model");
                m_Log.statusMessage("Interrupted");
              }

              synchronized (this) {
                m_StartBut.setEnabled(true);
                m_StopBut.setEnabled(false);
                m_RunThread = null;
              }

              if (m_Log instanceof TaskLogger) {
                ((TaskLogger)m_Log).taskFinished();
              }
            }
          }
        };

      m_RunThread.setPriority(Thread.MIN_PRIORITY);
      m_RunThread.start();
    }
  }
 
  /**
   * updates the capabilities filter of the GOE.
   *
   * @param filter  the new filter to use
   */
  protected void updateCapabilitiesFilter(Capabilities filter) {
    Instances     tempInst;
    Capabilities   filterClass;

    if (filter == null) {
      m_ClassifierEditor.setCapabilitiesFilter(new Capabilities(null));
      return;
    }
   
    if (!ExplorerDefaults.getInitGenericObjectEditorFilter())
      tempInst = new Instances(m_Instances, 0);
    else
      tempInst = new Instances(m_Instances);
    tempInst.setClassIndex(m_ClassCombo.getSelectedIndex());

    try {
      filterClass = Capabilities.forInstances(tempInst);
    }
    catch (Exception e) {
      filterClass = new Capabilities(null);
    }
   
    // set new filter
    m_ClassifierEditor.setCapabilitiesFilter(filterClass);
   
    // Check capabilities
    m_StartBut.setEnabled(true);
    Capabilities currentFilter = m_ClassifierEditor.getCapabilitiesFilter();
    Classifier classifier = (Classifier) m_ClassifierEditor.getValue();
    Capabilities currentSchemeCapabilities =  null;
    if (classifier != null && currentFilter != null &&
        (classifier instanceof CapabilitiesHandler)) {
      currentSchemeCapabilities = ((CapabilitiesHandler)classifier).getCapabilities();
     
      if (!currentSchemeCapabilities.supportsMaybe(currentFilter) &&
          !currentSchemeCapabilities.supports(currentFilter)) {
        m_StartBut.setEnabled(false);
      }
    }
  }
 
  /**
   * method gets called in case of a change event.
   *
   * @param e    the associated change event
   */
  public void capabilitiesFilterChanged(CapabilitiesFilterChangeEvent e) {
    if (e.getFilter() == null)
      updateCapabilitiesFilter(null);
    else
      updateCapabilitiesFilter((Capabilities) e.getFilter().clone());
  }

  /**
   * Sets the Explorer to use as parent frame (used for sending notifications
   * about changes in the data).
   *
   * @param parent  the parent frame
   */
  public void setExplorer(Explorer parent) {
    m_Explorer = parent;
  }
 
  /**
   * returns the parent Explorer frame.
   *
   * @return    the parent
   */
  public Explorer getExplorer() {
    return m_Explorer;
  }
 
  /**
   * Returns the title for the tab in the Explorer.
   *
   * @return     the title of this tab
   */
  public String getTabTitle() {
    return "Classify";
  }
 
  /**
   * Returns the tooltip for the tab in the Explorer.
   *
   * @return     the tooltip of this tab
   */
  public String getTabTitleToolTip() {
    return "Classify instances";
  }
 
  /**
   * Tests out the classifier panel from the command line.
   *
   * @param args may optionally contain the name of a dataset to load.
   */
  public static void main(String [] args) {

    try {
      final javax.swing.JFrame jf =
  new javax.swing.JFrame("Weka Explorer: Classifier");
      jf.getContentPane().setLayout(new BorderLayout());
      final ClassifierPanel sp = new ClassifierPanel();
      jf.getContentPane().add(sp, BorderLayout.CENTER);
      weka.gui.LogPanel lp = new weka.gui.LogPanel();
      sp.setLog(lp);
      jf.getContentPane().add(lp, BorderLayout.SOUTH);
      jf.addWindowListener(new java.awt.event.WindowAdapter() {
  public void windowClosing(java.awt.event.WindowEvent e) {
    jf.dispose();
    System.exit(0);
  }
      });
      jf.pack();
      jf.setSize(800, 600);
      jf.setVisible(true);
      if (args.length == 1) {
  System.err.println("Loading instances from " + args[0]);
  java.io.Reader r = new java.io.BufferedReader(
         new java.io.FileReader(args[0]));
  Instances i = new Instances(r);
  sp.setInstances(i);
      }
    } catch (Exception ex) {
      ex.printStackTrace();
      System.err.println(ex.getMessage());
    }
  }
}
TOP

Related Classes of weka.gui.explorer.ClassifierPanel

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.