Package org.vocvark.DataTypes

Examples of org.vocvark.DataTypes.FeatureDefinition


        String description = "A measure of the amount of spectral change in a signal. " +//\n" +
                "Found by calculating the change in the magnitude spectrum " +//\n" +
                "from frame to frame.";
        boolean is_sequential = true;
        int dimensions = 1;
        definition = new FeatureDefinition(name,
                description,
                is_sequential,
                dimensions);

        dependencies = new String[2];
View Full Code Here


        String description = "The sum of all entries in the beat histogram. " +
                "This is a good measure of the importance of " +
                "regular beats in a signal.";
        boolean is_sequential = true;
        int dimensions = 1;
        definition = new FeatureDefinition(name,
                description,
                is_sequential,
                dimensions);

        dependencies = new String[1];
View Full Code Here

        String name = "Strongest Frequency Via Spectral Centroid";
        String description = "The strongest frequency component of a signal, in Hz, " +
                "found via the spectral centroid.";
        boolean is_sequential = true;
        int dimensions = 1;
        definition = new FeatureDefinition(name,
                description,
                is_sequential,
                dimensions);

        dependencies = new String[2];
View Full Code Here

    public AreaMoments() {
        String name = "Area Method of Moments";
        String description = "2D statistical method of moments";
        String[] attributes = new String[]{"Area Method of Moments Window Length"};

        definition = new FeatureDefinition(name, description, true, 10,
                attributes);
        dependencies = new String[lengthOfWindow];
        for (int i = 0; i < dependencies.length; ++i) {
            dependencies[i] = "Magnitude Spectrum";
        }
View Full Code Here

        String description = "A histogram showing the relative strength of different "
                + "rhythmic periodicities (tempi) in a signal. Found by "
                + "calculating the auto-correlation of the RMS.";
        boolean is_sequential = true;
        int dimensions = 0;
        definition = new FeatureDefinition(name, description, is_sequential,
                dimensions);

        // int number_windows = 256;

        dependencies = new String[number_windows];
View Full Code Here

    public SpectralCentroid() {
        String name = "Spectral Centroid";
        String description = "The centre of mass of the power spectrum.";
        boolean is_sequential = true;
        int dimensions = 1;
        definition = new FeatureDefinition(name, description, is_sequential, dimensions);
        dependencies = new String[1];
        dependencies[0] = "Power Spectrum";

        offsets = new int[1];
        offsets[0] = 0;
View Full Code Here

    public LPCRemoved() {
        String name = "LPC";
        String description = "Linear Predictive Encoding implemented from 'Numerical Recipes in C'";

        definition = new FeatureDefinition(name, description, true,
                num_dimensions,
                new String[]{"Number of LPC Coeffecients to Calculate"});
        dependencies = null;
        offsets = null;
    }
View Full Code Here

                "magnitude spectrum bin. Not useful as a feature in " +
                "itself, but useful for calculating other features " +
                "from the magnitude spectrum and power spectrum.";
        boolean is_sequential = true;
        int dimensions = 0;
        definition = new FeatureDefinition(name,
                description,
                is_sequential,
                dimensions);

        dependencies = null;
View Full Code Here

        String name = "Zero Crossings";
        String description = "The number of times the waveform changed sign. " +
                "An indication of frequency as well as noisiness.";
        boolean is_sequential = true;
        int dimensions = 1;
        definition = new FeatureDefinition(name,
                description,
                is_sequential,
                dimensions);

        dependencies = null;
View Full Code Here

    public HarmonicSpectralSmoothness() {
        String name = "Peak Based Spectral Smoothness";
        String description = "Peak Based Spectral Smoothness is calculated from partials, not frequency bins. It is implemented accortding to McAdams 99 "
                + System.getProperty("line.separator")
                + System.getProperty("line.separator") + "McAdams, S. 1999. ";
        definition = new FeatureDefinition(name, description, true, 1);
        dependencies = new String[]{"Peak Detection"};
        offsets = new int[]{0};
    }
View Full Code Here

TOP

Related Classes of org.vocvark.DataTypes.FeatureDefinition

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.