}
private void restructureFeedforward() {
CreateFeedforward dialog = new CreateFeedforward(EncogWorkBench
.getInstance().getMainWindow());
BasicNetwork network = (BasicNetwork)method;
ActivationFunction oldActivationOutput = network.getActivation(network
.getLayerCount() - 1);
dialog.setActivationFunctionOutput(oldActivationOutput);
dialog.getInputCount().setValue(network.getInputCount());
dialog.getOutputCount().setValue(network.getOutputCount());
int hiddenLayerCount = network.getLayerCount() - 2;
ActivationFunction oldActivationHidden = new ActivationTANH();
for (int i = 0; i < hiddenLayerCount; i++) {
int num = network.getLayerNeuronCount(i + 1);
String str = "Hidden Layer " + (i + 1) + ": " + num + " neurons";
dialog.getHidden().getModel().addElement(str);
}
dialog.setActivationFunctionHidden(oldActivationHidden);
if (dialog.process()) {
// decide if entire network is to be recreated
if ((dialog.getActivationFunctionHidden() != oldActivationHidden)
|| (dialog.getActivationFunctionOutput() != oldActivationOutput)
|| dialog.getHidden().getModel().size() != (network
.getLayerCount() - 2)) {
FeedForwardPattern feedforward = new FeedForwardPattern();
feedforward.setActivationFunction(dialog
.getActivationFunctionHidden());
feedforward.setInputNeurons(dialog.getInputCount().getValue());
for (int i = 0; i < dialog.getHidden().getModel().size(); i++) {
String str = (String) dialog.getHidden().getModel()
.getElementAt(i);
int i1 = str.indexOf(':');
int i2 = str.indexOf("neur");
if (i1 != -1 && i2 != -1) {
str = str.substring(i1 + 1, i2).trim();
int neuronCount = Integer.parseInt(str);
feedforward.addHiddenLayer(neuronCount);
}
}
feedforward.setInputNeurons(dialog.getInputCount().getValue());
feedforward.setOutputNeurons(dialog.getOutputCount().getValue());
BasicNetwork obj = (BasicNetwork) feedforward.generate();
} else {
// try to prune it
PruneSelective prune = new PruneSelective(network);
int newInputCount = dialog.getInputCount().getValue();
int newOutputCount = dialog.getOutputCount().getValue();