Package org.encog.neural.networks

Examples of org.encog.neural.networks.BasicNetwork


    Assert.assertArrayEquals(model.getWeightIndex(),pruned.getWeightIndex());
  }
 
  public void testPruneNeuronInput()
  {
    BasicNetwork network = obtainNetwork();
    Assert.assertEquals(2, network.getInputCount());
    PruneSelective prune = new PruneSelective(network);
    prune.prune(0, 1);
    Assert.assertEquals(22, network.encodedArrayLength());
    Assert.assertEquals(1,network.getLayerNeuronCount(0));
    Assert.assertEquals("1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,20,22,23,25", network.dumpWeights());
   
    BasicNetwork model = EncogUtility.simpleFeedForward(1,3,0,4,false);
    checkWithModel(model.getStructure().getFlat(),network.getStructure().getFlat());
    Assert.assertEquals(1, network.getInputCount());
  }
View Full Code Here


    Assert.assertEquals(1, network.getInputCount());
  }
 
  public void testPruneNeuronHidden()
  {
    BasicNetwork network = obtainNetwork();
    PruneSelective prune = new PruneSelective(network);
    prune.prune(1, 1);
    Assert.assertEquals(18, network.encodedArrayLength());
    Assert.assertEquals(2,network.getLayerNeuronCount(1));
    Assert.assertEquals("1,3,4,5,7,8,9,11,12,13,15,16,17,18,19,23,24,25", network.dumpWeights());
   
    BasicNetwork model = EncogUtility.simpleFeedForward(2,2,0,4,false);
    checkWithModel(model.getStructure().getFlat(),network.getStructure().getFlat());   
  }
View Full Code Here

    checkWithModel(model.getStructure().getFlat(),network.getStructure().getFlat());   
  }
 
  public void testPruneNeuronOutput()
  {
    BasicNetwork network = obtainNetwork();
    Assert.assertEquals(4, network.getOutputCount());
    PruneSelective prune = new PruneSelective(network);
    prune.prune(2, 1);
    Assert.assertEquals(21, network.encodedArrayLength());
    Assert.assertEquals(3,network.getLayerNeuronCount(2));
    Assert.assertEquals("1,2,3,4,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25", network.dumpWeights());
   
    BasicNetwork model = EncogUtility.simpleFeedForward(2,3,0,3,false);
    checkWithModel(model.getStructure().getFlat(),network.getStructure().getFlat());
    Assert.assertEquals(3, network.getOutputCount());
  }
View Full Code Here

    Assert.assertEquals(3, network.getOutputCount());
  }
 
  public void testNeuronSignificance()
  {
    BasicNetwork network = obtainNetwork();   
    PruneSelective prune = new PruneSelective(network);
    double inputSig = prune.determineNeuronSignificance(0, 1);
    double hiddenSig = prune.determineNeuronSignificance(1, 1);
    double outputSig = prune.determineNeuronSignificance(2, 1);
    Assert.assertEquals(63.0, inputSig,0.01);
View Full Code Here

    Assert.assertEquals(26.0, outputSig,0.01);
  }
 
  public void testIncreaseNeuronCountHidden()
  {
    BasicNetwork network = XOR.createTrainedXOR();
    Assert.assertTrue( XOR.verifyXOR(network, 0.10) );
    PruneSelective prune = new PruneSelective(network);
    prune.changeNeuronCount(1, 5);
   
    BasicNetwork model = EncogUtility.simpleFeedForward(2,5,0,1,false);
    checkWithModel(model.getStructure().getFlat(),network.getStructure().getFlat());
   
    Assert.assertTrue( XOR.verifyXOR(network, 0.10) );
  }
View Full Code Here

  }
 
  public void testRandomizeNeuronInput()
  {
    double[] d = { 0,0,0,0,0,0,0,0,0,0,0,0,0 };
    BasicNetwork network = EncogUtility.simpleFeedForward(2,3,0,1,false);
    NetworkCODEC.arrayToNetwork(d, network);
    PruneSelective prune = new PruneSelective(network);
    prune.randomizeNeuron(100, 100, 0,1);
    Assert.assertEquals("0,0,0,0,0,100,0,0,100,0,0,100,0", network.dumpWeights());
  }
View Full Code Here

  }
 
  public void testRandomizeNeuronHidden()
  {
    double[] d = { 0,0,0,0,0,0,0,0,0,0,0,0,0 };
    BasicNetwork network = EncogUtility.simpleFeedForward(2,3,0,1,false);
    NetworkCODEC.arrayToNetwork(d, network);
    PruneSelective prune = new PruneSelective(network);
    prune.randomizeNeuron(100, 100, 1,1);
    Assert.assertEquals("0,100,0,0,0,0,0,100,100,100,0,0,0", network.dumpWeights());
  }
View Full Code Here

  }
 
  public void testRandomizeNeuronOutput()
  {
    double[] d = { 0,0,0,0,0,0,0,0,0,0,0,0,0 };
    BasicNetwork network = EncogUtility.simpleFeedForward(2,3,0,1,false);
    NetworkCODEC.arrayToNetwork(d, network);
    PruneSelective prune = new PruneSelective(network);
    prune.randomizeNeuron(100, 100, 2,0);
    Assert.assertEquals("100,100,100,100,0,0,0,0,0,0,0,0,0", network.dumpWeights());
  }
View Full Code Here

public class TestClone extends TestCase {

  public void testClone() throws Throwable
  {
    BasicNetwork source = XOR.createThreeLayerNet();
    source.reset();
   
    BasicNetwork target = (BasicNetwork)source.clone();
   
    TestCase.assertTrue(target.equals(source));
  }
View Full Code Here

    FeedForwardPattern pattern = new FeedForwardPattern();
    pattern.setInputNeurons(3);
    pattern.addHiddenLayer(50);
    pattern.setOutputNeurons(1);
    pattern.setActivationFunction(new ActivationTANH());
    BasicNetwork network = (BasicNetwork)pattern.generate();
    network.reset();
    return network;
  }
View Full Code Here

TOP

Related Classes of org.encog.neural.networks.BasicNetwork

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.