Package org.apache.mahout.math

Examples of org.apache.mahout.math.DenseVector$DenseElement


 
  @Override
  public void paint(Graphics g) {
    super.plotSampleData(g);
    Graphics2D g2 = (Graphics2D) g;
    Vector dv = new DenseVector(2);
    for (Canopy canopy : canopies) {
      if (canopy.getNumPoints() > DisplayDirichlet.sampleData.size() * 0.05) {
        g2.setStroke(new BasicStroke(2));
        g2.setColor(colors[1]);
        dv.assign(t1);
        Vector center = canopy.computeCentroid();
        DisplayDirichlet.plotEllipse(g2, center, dv);
        g2.setStroke(new BasicStroke(3));
        g2.setColor(colors[0]);
        dv.assign(t2);
        DisplayDirichlet.plotEllipse(g2, center, dv);
      }
    }
  }
View Full Code Here


  public void createBenchmark() {
    TimingStatistics stats = new TimingStatistics();
    for (int l = 0; l < loop; l++) {
      for (int i = 0; i < numVectors; i++) {
        TimingStatistics.Call call = stats.newCall();
        vectors[0][i] = new DenseVector(randomVectors.get(i));
        call.end();
      }
    }
    printStats(stats, "Create (copy)", "DenseVector");
   
View Full Code Here

  public void incrementalCreateBenchmark() {
    TimingStatistics stats = new TimingStatistics();
    for (int l = 0; l < loop; l++) {
      for (int i = 0; i < numVectors; i++) {
        vectors[0][i] = new DenseVector(cardinality);
        buildVectorIncrementally(stats, i, vectors[0][i], false);
      }
    }
    printStats(stats, "Create (incrementally)", "DenseVector");
View Full Code Here

    double sx = (double) res / ds;
    g2.setTransform(AffineTransform.getScaleInstance(sx, sx));
   
    // plot the axes
    g2.setColor(Color.BLACK);
    Vector dv = new DenseVector(2).assign(size / 2.0);
    Vector dv1 = new DenseVector(2).assign(DisplayMeanShift.clusterer.getT1());
    Vector dv2 = new DenseVector(2).assign(DisplayMeanShift.clusterer.getT2());
    DisplayDirichlet.plotRectangle(g2, new DenseVector(2).assign(2), dv);
    DisplayDirichlet.plotRectangle(g2, new DenseVector(2).assign(-2), dv);
   
    // plot the sample data
    g2.setColor(Color.DARK_GRAY);
    dv.assign(0.03);
    for (VectorWritable v : sampleData) {
View Full Code Here

     * solver.
     */
    Matrix corpusProjections = new DenseMatrix(corpus.numRows(), desiredRank);
    TrainingState state = new TrainingState(eigens, corpusProjections);
    for (int i = 0; i < desiredRank; i++) {
      Vector currentEigen = new DenseVector(cols);
      Vector previousEigen = null;
      while (hasNotConverged(currentEigen, corpus, state)) {
        int randomStartingIndex = getRandomStartingIndex(corpus, eigens);
        Vector initialTrainingVector = corpus.getRow(randomStartingIndex);
        state.setTrainingIndex(randomStartingIndex);
        updater.update(currentEigen, initialTrainingVector, state);
        for (int corpusRow = 0; corpusRow < corpus.numRows(); corpusRow++) {
          state.setTrainingIndex(corpusRow);
          if (corpusRow != randomStartingIndex)
            updater.update(currentEigen, corpus.getRow(corpusRow), state);
        }
        state.setFirstPass(false);
        if (debug) {
          if (previousEigen == null) {
            previousEigen = currentEigen.clone();
          } else {
            double dot = currentEigen.dot(previousEigen);
            if (dot > 0) {
              dot /= (currentEigen.norm(2) * previousEigen.norm(2));
            }
           // log.info("Current pass * previous pass = {}", dot);
          }
        }
      }
      // converged!
      double eigenValue = state.getStatusProgress().get(state.getStatusProgress().size() - 1).getEigenValue();
      // it's actually more efficient to do this to normalize than to call currentEigen = currentEigen.normalize(),
      // because the latter does a clone, which isn't necessary here.
      currentEigen.assign(new TimesFunction(), 1 / currentEigen.norm(2));
      eigens.assignRow(i, currentEigen);
      eigenValues.add(eigenValue);
      state.setCurrentEigenValues(eigenValues);
      log.info("Found eigenvector {}, eigenvalue: {}", i, eigenValue);

View Full Code Here

  @Override
  public void paint(Graphics g) {
    super.plotSampleData(g);
    Graphics2D g2 = (Graphics2D) g;
   
    Vector dv = new DenseVector(2);
    int i = DisplayDirichlet.result.size() - 1;
    for (Model<VectorWritable>[] models : result) {
      g2.setStroke(new BasicStroke(i == 0 ? 3 : 1));
      g2.setColor(colors[Math.min(DisplayDirichlet.colors.length - 1, i--)]);
      for (Model<VectorWritable> m : models) {
        NormalModel mm = (NormalModel) m;
        dv.assign(mm.getStdDev() * 3);
        if (DisplayDirichlet.isSignificant(mm)) {
          DisplayDirichlet.plotEllipse(g2, mm.getMean(), dv);
        }
      }
    }
View Full Code Here

    getResults();
    new DisplayOutputState();
  }
 
  static void generateResults() {
    DisplayDirichlet.generateResults(new NormalModelDistribution(new VectorWritable(new DenseVector(2))));
  }
View Full Code Here

 
  @Override
  public void paint(Graphics g) {
    super.plotSampleData(g);
    Graphics2D g2 = (Graphics2D) g;
    Vector dv = new DenseVector(2);
    int i = DisplayKMeans.clusters.size() - 1;
    for (List<Cluster> cls : clusters) {
      g2.setStroke(new BasicStroke(i == 0 ? 3 : 1));
      g2.setColor(colors[Math.min(DisplayDirichlet.colors.length - 1, i--)]);
      for (Cluster cluster : cls) {
        // if (true || cluster.getNumPoints() > sampleData.size() * 0.05) {
        dv.assign(cluster.getStd() * 3);
        System.out.println(cluster.getCenter().asFormatString() + ' ' + dv.asFormatString());
        DisplayDirichlet.plotEllipse(g2, cluster.getCenter(), dv);
        // }
      }
    }
  }
View Full Code Here

  @Override
  public void paint(Graphics g) {
    super.plotSampleData(g);
    Graphics2D g2 = (Graphics2D) g;
   
    Vector dv = new DenseVector(2);
    int i = DisplayDirichlet.result.size() - 1;
    for (Model<VectorWritable>[] models : result) {
      g2.setStroke(new BasicStroke(i == 0 ? 3 : 1));
      g2.setColor(colors[Math.min(DisplayDirichlet.colors.length - 1, i--)]);
      for (Model<VectorWritable> m : models) {
        AsymmetricSampledNormalModel mm = (AsymmetricSampledNormalModel) m;
        dv.assign(mm.getStdDev().times(3));
        if (DisplayDirichlet.isSignificant(mm)) {
          DisplayDirichlet.plotEllipse(g2, mm.getMean(), dv);
        }
      }
    }
View Full Code Here

    new Display2dASNDirichlet();
  }
 
  private static void generateResults() {
    DisplayDirichlet.generateResults(new AsymmetricSampledNormalDistribution(new VectorWritable(
        new DenseVector(2))));
  }
View Full Code Here

TOP

Related Classes of org.apache.mahout.math.DenseVector$DenseElement

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.