Package org.apache.mahout.math

Examples of org.apache.mahout.math.DenseVector$DenseElement


    generateSamples(30, 1, 0, 0.1);
    generateSamples(30, 0, 1, 0.1);

    DirichletClusterer<VectorWritable> dc = new DirichletClusterer<VectorWritable>(
        sampleData, new NormalModelDistribution(new VectorWritable(
            new DenseVector(2))), 1.0, 10, 1, 0);
    List<Model<VectorWritable>[]> result = dc.cluster(30);
    printResults(result, 2);
    assertNotNull(result);
  }
View Full Code Here


    generateSamples(30, 1, 0, 0.1);
    generateSamples(30, 0, 1, 0.1);

    DirichletClusterer<VectorWritable> dc = new DirichletClusterer<VectorWritable>(
        sampleData, new SampledNormalDistribution(new VectorWritable(
            new DenseVector(2))), 1.0, 10, 1, 0);
    List<Model<VectorWritable>[]> result = dc.cluster(30);
    printResults(result, 2);
    assertNotNull(result);
  }
View Full Code Here

    generateSamples(30, 1, 0, 0.1);
    generateSamples(30, 0, 1, 0.1);

    DirichletClusterer<VectorWritable> dc = new DirichletClusterer<VectorWritable>(
        sampleData, new AsymmetricSampledNormalDistribution(new VectorWritable(
            new DenseVector(2))), 1.0, 10, 1, 0);
    List<Model<VectorWritable>[]> result = dc.cluster(30);
    printResults(result, 2);
    assertNotNull(result);
  }
View Full Code Here

    generateSamples(300, 1, 0, 0.1);
    generateSamples(300, 0, 1, 0.1);

    DirichletClusterer<VectorWritable> dc = new DirichletClusterer<VectorWritable>(
        sampleData, new NormalModelDistribution(new VectorWritable(
            new DenseVector(2))), 1.0, 10, 1, 0);
    List<Model<VectorWritable>[]> result = dc.cluster(30);
    printResults(result, 20);
    assertNotNull(result);
  }
View Full Code Here

    generateSamples(300, 1, 0, 0.1);
    generateSamples(300, 0, 1, 0.1);

    DirichletClusterer<VectorWritable> dc = new DirichletClusterer<VectorWritable>(
        sampleData, new SampledNormalDistribution(new VectorWritable(
            new DenseVector(2))), 1.0, 10, 1, 0);
    List<Model<VectorWritable>[]> result = dc.cluster(30);
    printResults(result, 20);
    assertNotNull(result);
  }
View Full Code Here

    generateSamples(300, 1, 0, 0.1);
    generateSamples(300, 0, 1, 0.1);

    DirichletClusterer<VectorWritable> dc = new DirichletClusterer<VectorWritable>(
        sampleData, new AsymmetricSampledNormalDistribution(new VectorWritable(
            new DenseVector(2))), 1.0, 10, 1, 0);
    List<Model<VectorWritable>[]> result = dc.cluster(30);
    printResults(result, 20);
    assertNotNull(result);
  }
View Full Code Here

    generateSamples(3000, 1, 0, 0.1);
    generateSamples(3000, 0, 1, 0.1);

    DirichletClusterer<VectorWritable> dc = new DirichletClusterer<VectorWritable>(
        sampleData, new NormalModelDistribution(new VectorWritable(
            new DenseVector(2))), 1.0, 10, 1, 0);
    List<Model<VectorWritable>[]> result = dc.cluster(30);
    printResults(result, 200);
    assertNotNull(result);
  }
View Full Code Here

    generateSamples(3000, 1, 0, 0.1);
    generateSamples(3000, 0, 1, 0.1);

    DirichletClusterer<VectorWritable> dc = new DirichletClusterer<VectorWritable>(
        sampleData, new AsymmetricSampledNormalDistribution(new VectorWritable(
            new DenseVector(2))), 1.0, 10, 1, 0);
    List<Model<VectorWritable>[]> result = dc.cluster(30);
    printResults(result, 200);
    assertNotNull(result);
  }
View Full Code Here

    generateSamples(3000, 1, 0, 0.1);
    generateSamples(3000, 0, 1, 0.1);

    DirichletClusterer<VectorWritable> dc = new DirichletClusterer<VectorWritable>(
        sampleData, new SampledNormalDistribution(new VectorWritable(
            new DenseVector(2))), 1.0, 10, 1, 0);
    List<Model<VectorWritable>[]> result = dc.cluster(30);
    printResults(result, 200);
    assertNotNull(result);
  }
View Full Code Here

    generateSamples(30, 1, 0, 0.1, 3);
    generateSamples(30, 0, 1, 0.1, 3);

    DirichletClusterer<VectorWritable> dc = new DirichletClusterer<VectorWritable>(
        sampleData, new NormalModelDistribution(new VectorWritable(
            new DenseVector(3))), 1.0, 10, 1, 0);
    List<Model<VectorWritable>[]> result = dc.cluster(30);
    printResults(result, 2);
    assertNotNull(result);
  }
View Full Code Here

TOP

Related Classes of org.apache.mahout.math.DenseVector$DenseElement

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.