Package org.apache.mahout.cf.taste.impl.common

Examples of org.apache.mahout.cf.taste.impl.common.FullRunningAverage


    super.setPreference(userID, itemID, value);
    try {
      buildAveragesLock.writeLock().lock();
      RunningAverage average = itemAverages.get(itemID);
      if (average == null) {
        RunningAverage newAverage = new FullRunningAverage();
        newAverage.addDatum(prefDelta);
        itemAverages.put(itemID, newAverage);
      } else {
        average.changeDatum(prefDelta);
      }
    } finally {
View Full Code Here


  private final class PrefRetriever implements Retriever<Long, Float> {

    @Override
    public Float get(Long key) throws TasteException {
      RunningAverage average = new FullRunningAverage();
      PreferenceArray prefs = dataModel.getPreferencesFromUser(key);
      int size = prefs.length();
      if (size == 0) {
        return ZERO;
      }
      for (int i = 0; i < size; i++) {
        average.addDatum(prefs.getValue(i));
      }
      return (float) average.getAverage();
    }
View Full Code Here

  public ItemUserAverageRecommender(DataModel dataModel) {
    super(dataModel);
    this.itemAverages = new FastByIDMap<RunningAverage>();
    this.userAverages = new FastByIDMap<RunningAverage>();
    this.overallAveragePrefValue = new FullRunningAverage();
    this.buildAveragesLock = new ReentrantReadWriteLock();
    this.refreshHelper = new RefreshHelper(new Callable<Object>() {
      @Override
      public Object call() throws TasteException {
        buildAverageDiffs();
View Full Code Here

  private static void addDatumAndCreateIfNeeded(long itemID,
                                                float value,
                                                FastByIDMap<RunningAverage> averages) {
    RunningAverage itemAverage = averages.get(itemID);
    if (itemAverage == null) {
      itemAverage = new FullRunningAverage();
      averages.put(itemID, itemAverage);
    }
    itemAverage.addDatum(value);
  }
View Full Code Here

    super.setPreference(userID, itemID, value);
    try {
      buildAveragesLock.writeLock().lock();
      RunningAverage itemAverage = itemAverages.get(itemID);
      if (itemAverage == null) {
        RunningAverage newItemAverage = new FullRunningAverage();
        newItemAverage.addDatum(prefDelta);
        itemAverages.put(itemID, newItemAverage);
      } else {
        itemAverage.changeDatum(prefDelta);
      }
      RunningAverage userAverage = userAverages.get(userID);
      if (userAverage == null) {
        RunningAverage newUserAveragae = new FullRunningAverage();
        newUserAveragae.addDatum(prefDelta);
        userAverages.put(userID, newUserAveragae);
      } else {
        userAverage.changeDatum(prefDelta);
      }
      overallAveragePrefValue.changeDatum(prefDelta);
View Full Code Here

  private RunningAverage buildRunningAverage() {
    if (stdDevWeighted) {
      return compactAverages ? new CompactRunningAverageAndStdDev() : new FullRunningAverageAndStdDev();
    } else {
      return compactAverages ? new CompactRunningAverage() : new FullRunningAverage();
    }
  }
View Full Code Here

    }

    @Override
    public double estimate(Long itemID) throws TasteException {
      DataModel dataModel = getDataModel();
      RunningAverage average = new FullRunningAverage();
      LongPrimitiveIterator it = cluster.iterator();
      while (it.hasNext()) {
        Float pref = dataModel.getPreferenceValue(it.next(), itemID);
        if (pref != null) {
          average.addDatum(pref);
        }
      }
      return average.getAverage();
    }
View Full Code Here

    Preconditions.checkArgument(at >= 1, "at must be at least 1");
    Preconditions.checkArgument(evaluationPercentage > 0.0 && evaluationPercentage <= 1.0,
      "Invalid evaluationPercentage: %s", evaluationPercentage);

    int numItems = dataModel.getNumItems();
    RunningAverage precision = new FullRunningAverage();
    RunningAverage recall = new FullRunningAverage();
    RunningAverage fallOut = new FullRunningAverage();
    RunningAverage nDCG = new FullRunningAverage();

    LongPrimitiveIterator it = dataModel.getUserIDs();
    while (it.hasNext()) {

      long userID = it.nextLong();

      if (random.nextDouble() >= evaluationPercentage) {
        // Skipped
        continue;
      }

      long start = System.currentTimeMillis();

      PreferenceArray prefs = dataModel.getPreferencesFromUser(userID);
      int size = prefs.length();
      if (size < 2 * at) {
        // Really not enough prefs to meaningfully evaluate this user
        continue;
      }

      FastIDSet relevantItemIDs = new FastIDSet(at);

      // List some most-preferred items that would count as (most) "relevant" results
      double theRelevanceThreshold = Double.isNaN(relevanceThreshold) ? computeThreshold(prefs) : relevanceThreshold;

      prefs.sortByValueReversed();

      for (int i = 0; i < size && relevantItemIDs.size() < at; i++) {
        if (prefs.getValue(i) >= theRelevanceThreshold) {
          relevantItemIDs.add(prefs.getItemID(i));
        }
      }

      int numRelevantItems = relevantItemIDs.size();
      if (numRelevantItems <= 0) {
        continue;
      }

      FastByIDMap<PreferenceArray> trainingUsers = new FastByIDMap<PreferenceArray>(dataModel.getNumUsers());
      LongPrimitiveIterator it2 = dataModel.getUserIDs();
      while (it2.hasNext()) {
        processOtherUser(userID, relevantItemIDs, trainingUsers, it2.nextLong(), dataModel);
      }

      DataModel trainingModel = dataModelBuilder == null ? new GenericDataModel(trainingUsers)
          : dataModelBuilder.buildDataModel(trainingUsers);
      Recommender recommender = recommenderBuilder.buildRecommender(trainingModel);

      try {
        trainingModel.getPreferencesFromUser(userID);
      } catch (NoSuchUserException nsee) {
        continue; // Oops we excluded all prefs for the user -- just move on
      }

      int intersectionSize = 0;
      List<RecommendedItem> recommendedItems = recommender.recommend(userID, at, rescorer);
      for (RecommendedItem recommendedItem : recommendedItems) {
        if (relevantItemIDs.contains(recommendedItem.getItemID())) {
          intersectionSize++;
        }
      }

      int numRecommendedItems = recommendedItems.size();

      // Precision
      if (numRecommendedItems > 0) {
        precision.addDatum((double) intersectionSize / (double) numRecommendedItems);
      }

      // Recall
      recall.addDatum((double) intersectionSize / (double) numRelevantItems);

      // Fall-out
      if (numRelevantItems < size) {
        fallOut.addDatum((double) (numRecommendedItems - intersectionSize)
                         / (double) (numItems - numRelevantItems));
      }

      // nDCG
      // In computing, assume relevant IDs have relevance 1 and others 0
      double cumulativeGain = 0.0;
      double idealizedGain = 0.0;
      for (int i = 0; i < recommendedItems.size(); i++) {
        RecommendedItem item = recommendedItems.get(i);
        double discount = i == 0 ? 1.0 : 1.0 / log2(i + 1);
        if (relevantItemIDs.contains(item.getItemID())) {
          cumulativeGain += discount;
        }
        // otherwise we're multiplying discount by relevance 0 so it doesn't do anything

        // Ideally results would be ordered with all relevant ones first, so this theoretical
        // ideal list starts with number of relevant items equal to the total number of relevant items
        if (i < relevantItemIDs.size()) {
          idealizedGain += discount;
        }
      }
      nDCG.addDatum(cumulativeGain / idealizedGain);

      long end = System.currentTimeMillis();

      log.info("Evaluated with user {} in {}ms", userID, end - start);
      log.info("Precision/recall/fall-out/nDCG: {} / {} / {} / {}", new Object[] {
          precision.getAverage(), recall.getAverage(), fallOut.getAverage(), nDCG.getAverage()
      });
    }

    return new IRStatisticsImpl(precision.getAverage(), recall.getAverage(), fallOut.getAverage(), nDCG.getAverage());
  }
View Full Code Here

      this.excludeItemIfNotSimilarToAll = excludeItemIfNotSimilarToAll;
    }
   
    @Override
    public double estimate(Long itemID) throws TasteException {
      RunningAverage average = new FullRunningAverage();
      double[] similarities = similarity.itemSimilarities(itemID, toItemIDs);
      for (int i = 0; i < toItemIDs.length; i++) {
        long toItemID = toItemIDs[i];
        LongPair pair = new LongPair(toItemID, itemID);
        if (rescorer != null && rescorer.isFiltered(pair)) {
          continue;
        }
        double estimate = similarities[i];
        if (rescorer != null) {
          estimate = rescorer.rescore(pair, estimate);
        }
        if (excludeItemIfNotSimilarToAll || !Double.isNaN(estimate)) {
          average.addDatum(estimate);
        }
      }
      double averageEstimate = average.getAverage();
      return averageEstimate == 0 ? Double.NaN : averageEstimate;
    }
View Full Code Here

      }
    }

    protected double averateRating(long itemID) throws TasteException {
      PreferenceArray prefs = dataModel.getPreferencesForItem(itemID);
      RunningAverage avg = new FullRunningAverage();
      for (Preference pref : prefs) {
        avg.addDatum(pref.getValue());
      }
      return avg.getAverage();
    }
View Full Code Here

TOP

Related Classes of org.apache.mahout.cf.taste.impl.common.FullRunningAverage

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.