Package org.apache.mahout.cf.taste.impl.common

Examples of org.apache.mahout.cf.taste.impl.common.FullRunningAverage


    if (Double.isNaN(evaluationPercentage) || (evaluationPercentage <= 0.0) || (evaluationPercentage > 1.0)) {
      throw new IllegalArgumentException("Invalid evaluationPercentage: " + evaluationPercentage);
    }
   
    int numItems = dataModel.getNumItems();
    RunningAverage precision = new FullRunningAverage();
    RunningAverage recall = new FullRunningAverage();
    RunningAverage fallOut = new FullRunningAverage();
    LongPrimitiveIterator it = dataModel.getUserIDs();
    while (it.hasNext()) {
      long userID = it.nextLong();
      if (random.nextDouble() < evaluationPercentage) {
        long start = System.currentTimeMillis();
        FastIDSet relevantItemIDs = new FastIDSet(at);
        PreferenceArray prefs = dataModel.getPreferencesFromUser(userID);
        int size = prefs.length();
        if (size < 2 * at) {
          // Really not enough prefs to meaningfully evaluate this user
          continue;
        }
       
        // List some most-preferred items that would count as (most) "relevant" results
        double theRelevanceThreshold = Double.isNaN(relevanceThreshold) ?
            computeThreshold(prefs) : relevanceThreshold;
        prefs.sortByValueReversed();
        for (int i = 0; (i < size) && (relevantItemIDs.size() < at); i++) {
          if (prefs.getValue(i) >= theRelevanceThreshold) {
            relevantItemIDs.add(prefs.getItemID(i));
          }
        }
        int numRelevantItems = relevantItemIDs.size();
        if (numRelevantItems > 0) {
          FastByIDMap<PreferenceArray> trainingUsers = new FastByIDMap<PreferenceArray>(dataModel
              .getNumUsers());
          LongPrimitiveIterator it2 = dataModel.getUserIDs();
          while (it2.hasNext()) {
            processOtherUser(userID, relevantItemIDs, trainingUsers, it2
                .nextLong(), dataModel);
          }
         
          DataModel trainingModel = dataModelBuilder == null ? new GenericDataModel(trainingUsers)
              : dataModelBuilder.buildDataModel(trainingUsers);
          Recommender recommender = recommenderBuilder.buildRecommender(trainingModel);
         
          try {
            trainingModel.getPreferencesFromUser(userID);
          } catch (NoSuchUserException nsee) {
            continue; // Oops we excluded all prefs for the user -- just move on
          }
         
          int intersectionSize = 0;
          List<RecommendedItem> recommendedItems = recommender.recommend(userID, at, rescorer);
          for (RecommendedItem recommendedItem : recommendedItems) {
            if (relevantItemIDs.contains(recommendedItem.getItemID())) {
              intersectionSize++;
            }
          }
          int numRecommendedItems = recommendedItems.size();
          if (numRecommendedItems > 0) {
            precision.addDatum((double) intersectionSize / (double) numRecommendedItems);
          }
          recall.addDatum((double) intersectionSize / (double) numRelevantItems);
          if (numRelevantItems < size) {
            fallOut.addDatum((double) (numRecommendedItems - intersectionSize)
                             / (double) (numItems - numRelevantItems));
          }
         
          long end = System.currentTimeMillis();
          GenericRecommenderIRStatsEvaluator.log
              .info("Evaluated with user {} in {}ms", userID, (end - start));
          log.info("Precision/recall/fall-out: {} / {} / {}",
            new Object[] {precision.getAverage(), recall.getAverage(), fallOut.getAverage()});
        }
      }
    }
   
    return new IRStatisticsImpl(precision.getAverage(), recall.getAverage(), fallOut.getAverage());
  }
View Full Code Here


    }
   
    @Override
    public double estimate(Long itemID) throws TasteException {
      DataModel dataModel = getDataModel();
      RunningAverage average = new FullRunningAverage();
      LongPrimitiveIterator it = cluster.iterator();
      while (it.hasNext()) {
        Float pref = dataModel.getPreferenceValue(it.next(), itemID);
        if (pref != null) {
          average.addDatum(pref);
        }
      }
      return average.getAverage();
    }
View Full Code Here

 
  private RunningAverage buildRunningAverage() {
    if (stdDevWeighted) {
      return compactAverages ? new CompactRunningAverageAndStdDev() : new FullRunningAverageAndStdDev();
    } else {
      return compactAverages ? new CompactRunningAverage() : new FullRunningAverage();
    }
  }
View Full Code Here

 
  public ItemUserAverageRecommender(DataModel dataModel) {
    super(dataModel);
    this.itemAverages = new FastByIDMap<RunningAverage>();
    this.userAverages = new FastByIDMap<RunningAverage>();
    this.overallAveragePrefValue = new FullRunningAverage();
    this.buildAveragesLock = new ReentrantReadWriteLock();
    this.refreshHelper = new RefreshHelper(new Callable<Object>() {
      @Override
      public Object call() throws TasteException {
        buildAverageDiffs();
View Full Code Here

  }
 
  private static void addDatumAndCreateIfNeeded(long itemID, float value, FastByIDMap<RunningAverage> averages) {
    RunningAverage itemAverage = averages.get(itemID);
    if (itemAverage == null) {
      itemAverage = new FullRunningAverage();
      averages.put(itemID, itemAverage);
    }
    itemAverage.addDatum(value);
  }
View Full Code Here

    super.setPreference(userID, itemID, value);
    try {
      buildAveragesLock.writeLock().lock();
      RunningAverage itemAverage = itemAverages.get(itemID);
      if (itemAverage == null) {
        RunningAverage newItemAverage = new FullRunningAverage();
        newItemAverage.addDatum(prefDelta);
        itemAverages.put(itemID, newItemAverage);
      } else {
        itemAverage.changeDatum(prefDelta);
      }
      RunningAverage userAverage = userAverages.get(userID);
      if (userAverage == null) {
        RunningAverage newUserAveragae = new FullRunningAverage();
        newUserAveragae.addDatum(prefDelta);
        userAverages.put(userID, newUserAveragae);
      } else {
        userAverage.changeDatum(prefDelta);
      }
      overallAveragePrefValue.changeDatum(prefDelta);
View Full Code Here

    }
   
    @Override
    public double estimate(Long itemID) throws TasteException {
      DataModel dataModel = getDataModel();
      RunningAverage average = new FullRunningAverage();
      LongPrimitiveIterator it = cluster.iterator();
      while (it.hasNext()) {
        Float pref = dataModel.getPreferenceValue(it.next(), itemID);
        if (pref != null) {
          average.addDatum(pref);
        }
      }
      return average.getAverage();
    }
View Full Code Here

        int size = prefs.length();
        for (int i = 0; i < size; i++) {
          long itemID = prefs.getItemID(i);
          RunningAverage average = itemAverages.get(itemID);
          if (average == null) {
            average = new FullRunningAverage();
            itemAverages.put(itemID, average);
          }
          average.addDatum(prefs.getValue(i));
        }
      }
View Full Code Here

    super.setPreference(userID, itemID, value);
    try {
      buildAveragesLock.writeLock().lock();
      RunningAverage average = itemAverages.get(itemID);
      if (average == null) {
        RunningAverage newAverage = new FullRunningAverage();
        newAverage.addDatum(prefDelta);
        itemAverages.put(itemID, newAverage);
      } else {
        average.changeDatum(prefDelta);
      }
    } finally {
View Full Code Here

      this.rescorer = rescorer;
    }
   
    @Override
    public double estimate(Long itemID) throws TasteException {
      RunningAverage average = new FullRunningAverage();
      for (long toItemID : toItemIDs) {
        LongPair pair = new LongPair(toItemID, itemID);
        if ((rescorer != null) && rescorer.isFiltered(pair)) {
          continue;
        }
        double estimate = similarity.itemSimilarity(toItemID, itemID);
        if (rescorer != null) {
          estimate = rescorer.rescore(pair, estimate);
        }
        average.addDatum(estimate);
      }
      return average.getAverage();
    }
View Full Code Here

TOP

Related Classes of org.apache.mahout.cf.taste.impl.common.FullRunningAverage

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.