Package org.apache.hama.ml.math

Examples of org.apache.hama.ml.math.DenseDoubleVector$NonZeroIterator


      String[] split = s.split(" ");
      double[] dar = new double[split.length];
      for (int i = 0; i < split.length; i++) {
        dar[i] = Double.valueOf(split[i]);
      }
      return new DenseDoubleVector(dar);
    }
View Full Code Here


  private void updateTheta(double[] thetaDiff) {
    double[] newTheta = new double[theta.getLength()];
    for (int j = 0; j < theta.getLength(); j++) {
      newTheta[j] = theta.get(j) - thetaDiff[j] * alpha;
    }
    theta = new DenseDoubleVector(newTheta);
  }
View Full Code Here

  private void broadcastVector(
      BSPPeer<VectorWritable, DoubleWritable, VectorWritable, DoubleWritable, VectorWritable> peer,
      double[] vector) throws IOException {
    for (String peerName : peer.getAllPeerNames()) {
      if (!peerName.equals(peer.getPeerName())) { // avoid sending to oneself
        peer.send(peerName, new VectorWritable(new DenseDoubleVector(vector)));
      }
    }
  }
View Full Code Here

          BSPPeer<VectorWritable, DoubleWritable, VectorWritable, DoubleWritable, VectorWritable> peer)
      throws IOException, SyncException, InterruptedException {
    if (theta == null) {
      if (master) {
        int size = getXSize(peer);
        theta = new DenseDoubleVector(size, peer.getConfiguration().getInt(
            INITIAL_THETA_VALUES, 1));
        broadcastVector(peer, theta.toArray());
        if (log.isDebugEnabled()) {
          log.debug(new StringBuilder(peer.getPeerName()).append(
              ": sending theta").toString());
View Full Code Here

        double[] vals = new double[tokens.length];
        for (int i = 0; i < tokens.length; ++i) {
          vals[i] = Double.parseDouble(tokens[i]);
        }
        writer.append(new LongWritable(), new VectorWritable(
            new DenseDoubleVector(vals)));
      }
      writer.close();
      br.close();
    } catch (IOException e1) {
      e1.printStackTrace();
View Full Code Here

    regression.setMomemtumWeight(0.1);

    int iterations = 100;
    for (int i = 0; i < iterations; ++i) {
      for (int j = 0; j < instances.length; ++j) {
        regression.trainOnline(new DenseDoubleVector(instances[j]));
      }
    }

    double relativeError = 0;
    for (int i = 0; i < instances.length; ++i) {
      DoubleVector test = new DenseDoubleVector(instances[i]);
      double expected = test.get(test.getDimension() - 1);
      test = test.slice(test.getDimension() - 1);
      double actual = regression.getOutput(test).get(0);
      relativeError += Math.abs((expected - actual) / expected);
    }

    relativeError /= instances.length;
View Full Code Here

    regression.setMomemtumWeight(0.1);
    regression.setRegularizationWeight(0.05);
    int iterations = 2000;
    for (int i = 0; i < iterations; ++i) {
      for (double[] trainingInstance : trainingInstances) {
        regression.trainOnline(new DenseDoubleVector(trainingInstance));
      }
    }

    double relativeError = 0.0;
    // calculate the error on test instance
    for (double[] testInstance : testInstances) {
      DoubleVector instance = new DenseDoubleVector(testInstance);
      double expected = instance.get(instance.getDimension() - 1);
      instance = instance.slice(instance.getDimension() - 1);
      double actual = regression.getOutput(instance).get(0);
      if (expected == 0) {
        expected = 0.0000001;
      }
      relativeError += Math.abs((expected - actual) / expected);
View Full Code Here

    regression.setMomemtumWeight(0.1);
    regression.setRegularizationWeight(0.1);
    int iterations = 1000;
    for (int i = 0; i < iterations; ++i) {
      for (double[] trainingInstance : trainingInstances) {
        regression.trainOnline(new DenseDoubleVector(trainingInstance));
      }
    }

    double errorRate = 0;
    // calculate the error on test instance
    for (double[] testInstance : testInstances) {
      DoubleVector instance = new DenseDoubleVector(testInstance);
      double expected = instance.get(instance.getDimension() - 1);
      DoubleVector features = instance.slice(instance.getDimension() - 1);
      double actual = regression.getOutput(features).get(0);
      if (actual < 0.5 && expected >= 0.5 || actual >= 0.5 && expected < 0.5) {
        ++errorRate;
      }
View Full Code Here

    matrices[0] = new DenseDoubleMatrix(5, 3, 0.5);
    matrices[1] = new DenseDoubleMatrix(1, 6, 0.5);
    ann.setWeightMatrices(matrices);

    double[] arr = new double[] { 0, 1 };
    DoubleVector training = new DenseDoubleVector(arr);
    DoubleVector result = ann.getOutput(training);
    assertEquals(1, result.getDimension());
    // assertEquals(3, result.get(0), 0.000001);

    // second network
    SmallLayeredNeuralNetwork ann2 = new SmallLayeredNeuralNetwork();
    ann2.addLayer(2, false, FunctionFactory.createDoubleFunction("Sigmoid"));
    ann2.addLayer(3, false, FunctionFactory.createDoubleFunction("Sigmoid"));
    ann2.addLayer(1, true, FunctionFactory.createDoubleFunction("Sigmoid"));
    ann2.setCostFunction(FunctionFactory
        .createDoubleDoubleFunction("SquaredError"));
    ann2.setLearningRate(0.3);
    // intentionally initialize all weights to 0.5
    DoubleMatrix[] matrices2 = new DenseDoubleMatrix[2];
    matrices2[0] = new DenseDoubleMatrix(3, 3, 0.5);
    matrices2[1] = new DenseDoubleMatrix(1, 4, 0.5);
    ann2.setWeightMatrices(matrices2);

    double[] test = { 0, 0 };
    double[] result2 = { 0.807476 };

    DoubleVector vec = ann2.getOutput(new DenseDoubleVector(test));
    assertArrayEquals(result2, vec.toArray(), 0.000001);

    SmallLayeredNeuralNetwork ann3 = new SmallLayeredNeuralNetwork();
    ann3.addLayer(2, false, FunctionFactory.createDoubleFunction("Sigmoid"));
    ann3.addLayer(3, false, FunctionFactory.createDoubleFunction("Sigmoid"));
    ann3.addLayer(1, true, FunctionFactory.createDoubleFunction("Sigmoid"));
    ann3.setCostFunction(FunctionFactory
        .createDoubleDoubleFunction("SquaredError"));
    ann3.setLearningRate(0.3);
    // intentionally initialize all weights to 0.5
    DoubleMatrix[] initMatrices = new DenseDoubleMatrix[2];
    initMatrices[0] = new DenseDoubleMatrix(3, 3, 0.5);
    initMatrices[1] = new DenseDoubleMatrix(1, 4, 0.5);
    ann3.setWeightMatrices(initMatrices);

    double[] instance = { 0, 1 };
    DoubleVector output = ann3.getOutput(new DenseDoubleVector(instance));
    assertEquals(0.8315410, output.get(0), 0.000001);
  }
View Full Code Here

    int iterations = 50000; // iteration should be set to a very large number
    double[][] instances = { { 0, 1, 1 }, { 0, 0, 0 }, { 1, 0, 1 }, { 1, 1, 0 } };
    for (int i = 0; i < iterations; ++i) {
      DoubleMatrix[] matrices = null;
      for (int j = 0; j < instances.length; ++j) {
        matrices = ann.trainByInstance(new DenseDoubleVector(instances[j
            % instances.length]));
        ann.updateWeightMatrices(matrices);
      }
    }

    for (int i = 0; i < instances.length; ++i) {
      DoubleVector input = new DenseDoubleVector(instances[i]).slice(2);
      // the expected output is the last element in array
      double result = instances[i][2];
      double actual = ann.getOutput(input).get(0);
      if (result < 0.5 && actual >= 0.5 || result >= 0.5 && actual < 0.5) {
        Log.info("Neural network failes to lear the XOR.");
      }
    }

    // write model into file and read out
    String modelPath = "/tmp/testSmallLayeredNeuralNetworkXORLocal";
    ann.setModelPath(modelPath);
    try {
      ann.writeModelToFile();
    } catch (IOException e) {
      e.printStackTrace();
    }
    SmallLayeredNeuralNetwork annCopy = new SmallLayeredNeuralNetwork(modelPath);
    // test on instances
    for (int i = 0; i < instances.length; ++i) {
      DoubleVector input = new DenseDoubleVector(instances[i]).slice(2);
      // the expected output is the last element in array
      double result = instances[i][2];
      double actual = annCopy.getOutput(input).get(0);
      if (result < 0.5 && actual >= 0.5 || result >= 0.5 && actual < 0.5) {
        Log.info("Neural network failes to lear the XOR.");
View Full Code Here

TOP

Related Classes of org.apache.hama.ml.math.DenseDoubleVector$NonZeroIterator

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.