Package org.apache.hama.ml.ann

Examples of org.apache.hama.ml.ann.SmallLayeredNeuralNetwork


  /* Internal model */
  private final SmallLayeredNeuralNetwork ann;

  public LinearRegression(int dimension) {
    ann = new SmallLayeredNeuralNetwork();
    ann.addLayer(dimension, false,
        FunctionFactory.createDoubleFunction("IdentityFunction"));
    ann.addLayer(1, true,
        FunctionFactory.createDoubleFunction("IdentityFunction"));
    ann.setCostFunction(FunctionFactory
View Full Code Here


    ann.setCostFunction(FunctionFactory
        .createDoubleDoubleFunction("SquaredError"));
  }

  public LinearRegression(String modelPath) {
    ann = new SmallLayeredNeuralNetwork(modelPath);
  }
View Full Code Here

      String featureDataPath = args[1];
      String resultDataPath = args[2];
      String modelPath = args[3];

      SmallLayeredNeuralNetwork ann = new SmallLayeredNeuralNetwork(modelPath);

      // process data in streaming approach
      FileSystem fs = FileSystem.get(new URI(featureDataPath), conf);
      BufferedReader br = new BufferedReader(new InputStreamReader(
          fs.open(new Path(featureDataPath))));
      Path outputPath = new Path(resultDataPath);
      if (fs.exists(outputPath)) {
        fs.delete(outputPath, true);
      }
      BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(
          fs.create(outputPath)));

      String line = null;

      while ((line = br.readLine()) != null) {
        if (line.trim().length() == 0) {
          continue;
        }
        String[] tokens = line.trim().split(",");
        double[] vals = new double[tokens.length];
        for (int i = 0; i < tokens.length; ++i) {
          vals[i] = Double.parseDouble(tokens[i]);
        }
        DoubleVector instance = new DenseDoubleVector(vals);
        DoubleVector result = ann.getOutput(instance);
        double[] arrResult = result.toArray();
        StringBuilder sb = new StringBuilder();
        for (int i = 0; i < arrResult.length; ++i) {
          sb.append(arrResult[i]);
          if (i != arrResult.length - 1) {
            sb.append(",");
          } else {
            sb.append("\n");
          }
        }
        bw.write(sb.toString());
      }

      br.close();
      bw.close();
    } else if (mode.equals("train")) {
      if (args.length < 5) {
        printUsage();
        return;
      }

      String trainingDataPath = args[1];
      String trainedModelPath = args[2];

      int featureDimension = Integer.parseInt(args[3]);
      int labelDimension = Integer.parseInt(args[4]);

      int iteration = 1000;
      double learningRate = 0.4;
      double momemtumWeight = 0.2;
      double regularizationWeight = 0.01;

      // parse parameters
      if (args.length >= 6) {
        try {
          iteration = Integer.parseInt(args[5]);
          System.out.printf("Iteration: %d\n", iteration);
        } catch (NumberFormatException e) {
          System.err
              .println("MAX_ITERATION format invalid. It should be a positive number.");
          return;
        }
      }
      if (args.length >= 7) {
        try {
          learningRate = Double.parseDouble(args[6]);
          System.out.printf("Learning rate: %f\n", learningRate);
        } catch (NumberFormatException e) {
          System.err
              .println("LEARNING_RATE format invalid. It should be a positive double in range (0, 1.0)");
          return;
        }
      }
      if (args.length >= 8) {
        try {
          momemtumWeight = Double.parseDouble(args[7]);
          System.out.printf("Momemtum weight: %f\n", momemtumWeight);
        } catch (NumberFormatException e) {
          System.err
              .println("MOMEMTUM_WEIGHT format invalid. It should be a positive double in range (0, 1.0)");
          return;
        }
      }
      if (args.length >= 9) {
        try {
          regularizationWeight = Double.parseDouble(args[8]);
          System.out
              .printf("Regularization weight: %f\n", regularizationWeight);
        } catch (NumberFormatException e) {
          System.err
              .println("REGULARIZATION_WEIGHT format invalid. It should be a positive double in range (0, 1.0)");
          return;
        }
      }

      // train the model
      SmallLayeredNeuralNetwork ann = new SmallLayeredNeuralNetwork();
      ann.setLearningRate(learningRate);
      ann.setMomemtumWeight(momemtumWeight);
      ann.setRegularizationWeight(regularizationWeight);
      ann.addLayer(featureDimension, false,
          FunctionFactory.createDoubleFunction("Sigmoid"));
      ann.addLayer(featureDimension, false,
          FunctionFactory.createDoubleFunction("Sigmoid"));
      ann.addLayer(labelDimension, true,
          FunctionFactory.createDoubleFunction("Sigmoid"));
      ann.setCostFunction(FunctionFactory
          .createDoubleDoubleFunction("CrossEntropy"));
      ann.setModelPath(trainedModelPath);

      Map<String, String> trainingParameters = new HashMap<String, String>();
      trainingParameters.put("tasks", "5");
      trainingParameters.put("training.max.iterations", "" + iteration);
      trainingParameters.put("training.batch.size", "300");
      trainingParameters.put("convergence.check.interval", "1000");
      ann.train(new Path(trainingDataPath), trainingParameters);
    }

  }
View Full Code Here

public class LogisticRegression {
 
  private final SmallLayeredNeuralNetwork ann;
 
  public LogisticRegression(int dimension) {
    this.ann = new SmallLayeredNeuralNetwork();
    this.ann.addLayer(dimension, false, FunctionFactory.createDoubleFunction("Sigmoid"));
    this.ann.addLayer(1, true, FunctionFactory.createDoubleFunction("Sigmoid"));
    this.ann.setCostFunction(FunctionFactory.createDoubleDoubleFunction("CrossEntropy"));
  }
View Full Code Here

    this.ann.addLayer(1, true, FunctionFactory.createDoubleFunction("Sigmoid"));
    this.ann.setCostFunction(FunctionFactory.createDoubleDoubleFunction("CrossEntropy"));
  }
 
  public LogisticRegression(String modelPath) {
    this.ann = new SmallLayeredNeuralNetwork(modelPath);
  }
View Full Code Here

      String featureDataPath = args[1];
      String resultDataPath = args[2];
      String modelPath = args[3];

      SmallLayeredNeuralNetwork ann = new SmallLayeredNeuralNetwork(modelPath);

      // process data in streaming approach
      FileSystem fs = FileSystem.get(new URI(featureDataPath),
          new Configuration());
      BufferedReader br = new BufferedReader(new InputStreamReader(
          fs.open(new Path(featureDataPath))));
      Path outputPath = new Path(resultDataPath);
      if (fs.exists(outputPath)) {
        fs.delete(outputPath, true);
      }
      BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(
          fs.create(outputPath)));

      String line = null;

      while ((line = br.readLine()) != null) {
        if (line.trim().length() == 0) {
          continue;
        }
        String[] tokens = line.trim().split(",");
        double[] vals = new double[tokens.length];
        for (int i = 0; i < tokens.length; ++i) {
          vals[i] = Double.parseDouble(tokens[i]);
        }
        DoubleVector instance = new DenseDoubleVector(vals);
        DoubleVector result = ann.getOutput(instance);
        double[] arrResult = result.toArray();
        StringBuilder sb = new StringBuilder();
        for (int i = 0; i < arrResult.length; ++i) {
          sb.append(arrResult[i]);
          if (i != arrResult.length - 1) {
            sb.append(",");
          } else {
            sb.append("\n");
          }
        }
        bw.write(sb.toString());
      }

      br.close();
      bw.close();
    } else if (mode.equals("train")) {
      if (args.length < 5) {
        printUsage();
        return;
      }

      String trainingDataPath = args[1];
      String trainedModelPath = args[2];

      int featureDimension = Integer.parseInt(args[3]);
      int labelDimension = Integer.parseInt(args[4]);

      int iteration = 1000;
      double learningRate = 0.4;
      double momemtumWeight = 0.2;
      double regularizationWeight = 0.01;

      // parse parameters
      if (args.length >= 6) {
        try {
          iteration = Integer.parseInt(args[5]);
          System.out.printf("Iteration: %d\n", iteration);
        } catch (NumberFormatException e) {
          System.err
              .println("MAX_ITERATION format invalid. It should be a positive number.");
          return;
        }
      }
      if (args.length >= 7) {
        try {
          learningRate = Double.parseDouble(args[6]);
          System.out.printf("Learning rate: %f\n", learningRate);
        } catch (NumberFormatException e) {
          System.err
              .println("LEARNING_RATE format invalid. It should be a positive double in range (0, 1.0)");
          return;
        }
      }
      if (args.length >= 8) {
        try {
          momemtumWeight = Double.parseDouble(args[7]);
          System.out.printf("Momemtum weight: %f\n", momemtumWeight);
        } catch (NumberFormatException e) {
          System.err
              .println("MOMEMTUM_WEIGHT format invalid. It should be a positive double in range (0, 1.0)");
          return;
        }
      }
      if (args.length >= 9) {
        try {
          regularizationWeight = Double.parseDouble(args[8]);
          System.out
              .printf("Regularization weight: %f\n", regularizationWeight);
        } catch (NumberFormatException e) {
          System.err
              .println("REGULARIZATION_WEIGHT format invalid. It should be a positive double in range (0, 1.0)");
          return;
        }
      }

      // train the model
      SmallLayeredNeuralNetwork ann = new SmallLayeredNeuralNetwork();
      ann.setLearningRate(learningRate);
      ann.setMomemtumWeight(momemtumWeight);
      ann.setRegularizationWeight(regularizationWeight);
      ann.addLayer(featureDimension, false,
          FunctionFactory.createDoubleFunction("Sigmoid"));
      ann.addLayer(featureDimension, false,
          FunctionFactory.createDoubleFunction("Sigmoid"));
      ann.addLayer(labelDimension, true,
          FunctionFactory.createDoubleFunction("Sigmoid"));
      ann.setCostFunction(FunctionFactory
          .createDoubleDoubleFunction("CrossEntropy"));
      ann.setModelPath(trainedModelPath);

      Map<String, String> trainingParameters = new HashMap<String, String>();
      trainingParameters.put("tasks", "5");
      trainingParameters.put("training.max.iterations", "" + iteration);
      trainingParameters.put("training.batch.size", "300");
      trainingParameters.put("convergence.check.interval", "1000");
      ann.train(new Path(trainingDataPath), trainingParameters);
    }

  }
View Full Code Here

  /* Internal model */
  private SmallLayeredNeuralNetwork ann;

  public LinearRegression(int dimension) {
    ann = new SmallLayeredNeuralNetwork();
    ann.addLayer(dimension, false,
        FunctionFactory.createDoubleFunction("IdentityFunction"));
    ann.addLayer(1, true,
        FunctionFactory.createDoubleFunction("IdentityFunction"));
    ann.setCostFunction(FunctionFactory
View Full Code Here

    ann.setCostFunction(FunctionFactory
        .createDoubleDoubleFunction("SquaredError"));
  }

  public LinearRegression(String modelPath) {
    ann = new SmallLayeredNeuralNetwork(modelPath);
  }
View Full Code Here

public class LogisticRegression {
 
  private SmallLayeredNeuralNetwork ann;
 
  public LogisticRegression(int dimension) {
    this.ann = new SmallLayeredNeuralNetwork();
    this.ann.addLayer(dimension, false, FunctionFactory.createDoubleFunction("Sigmoid"));
    this.ann.addLayer(1, true, FunctionFactory.createDoubleFunction("Sigmoid"));
    this.ann.setCostFunction(FunctionFactory.createDoubleDoubleFunction("CrossEntropy"));
  }
View Full Code Here

    this.ann.addLayer(1, true, FunctionFactory.createDoubleFunction("Sigmoid"));
    this.ann.setCostFunction(FunctionFactory.createDoubleDoubleFunction("CrossEntropy"));
  }
 
  public LogisticRegression(String modelPath) {
    this.ann = new SmallLayeredNeuralNetwork(modelPath);
  }
View Full Code Here

TOP

Related Classes of org.apache.hama.ml.ann.SmallLayeredNeuralNetwork

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.