Package org.apache.hadoop.hive.ql.plan

Examples of org.apache.hadoop.hive.ql.plan.ReduceWork


    Operator<SelectDesc> op4 = OperatorFactory.get(new SelectDesc(Utilities
        .makeList(getStringColumn("key"), getStringColumn("value")),
        outputColumns), op0);

    addMapWork(mr, src, "a", op4);
    ReduceWork rWork = new ReduceWork();
    mr.setReduceWork(rWork);
    rWork.setNumReduceTasks(Integer.valueOf(1));
    rWork.setKeyDesc(op0.getConf().getKeySerializeInfo());
    rWork.getTagToValueDesc().add(op0.getConf().getValueSerializeInfo());

    // reduce side work
    Operator<FileSinkDesc> op3 = OperatorFactory.get(new FileSinkDesc(tmpdir
        + "mapredplan5.out", Utilities.defaultTd, false));

    Operator<ExtractDesc> op2 = OperatorFactory.get(new ExtractDesc(
        getStringColumn(Utilities.ReduceField.VALUE.toString())), op3);

    rWork.setReducer(op2);
  }
View Full Code Here


    Operator<SelectDesc> op4 = OperatorFactory.get(new SelectDesc(Utilities
        .makeList(getStringColumn("key"), getStringColumn("value")),
        outputColumns), op0);

    addMapWork(mr, src, "a", op4);
    ReduceWork rWork = new ReduceWork();
    mr.setReduceWork(rWork);
    rWork.setNumReduceTasks(Integer.valueOf(1));
    rWork.setKeyDesc(op1.getConf().getKeySerializeInfo());
    rWork.getTagToValueDesc().add(op1.getConf().getValueSerializeInfo());

    // reduce side work
    Operator<FileSinkDesc> op3 = OperatorFactory.get(new FileSinkDesc(tmpdir
        + "mapredplan6.out", Utilities.defaultTd, false));

    Operator<FilterDesc> op2 = OperatorFactory.get(getTestFilterDesc("0"), op3);

    Operator<ExtractDesc> op5 = OperatorFactory.get(new ExtractDesc(
        getStringColumn(Utilities.ReduceField.VALUE.toString())), op2);

    rWork.setReducer(op5);
  }
View Full Code Here

  /**
   * Set the number of reducers for the mapred work.
   */
  private void setNumberOfReducers() throws IOException {
    ReduceWork rWork = work.getReduceWork();
    // this is a temporary hack to fix things that are not fixed in the compiler
    Integer numReducersFromWork = rWork == null ? 0 : rWork.getNumReduceTasks();

    if (rWork == null) {
      console
          .printInfo("Number of reduce tasks is set to 0 since there's no reduce operator");
    } else {
      if (numReducersFromWork >= 0) {
        console.printInfo("Number of reduce tasks determined at compile time: "
            + rWork.getNumReduceTasks());
      } else if (job.getNumReduceTasks() > 0) {
        int reducers = job.getNumReduceTasks();
        rWork.setNumReduceTasks(reducers);
        console
            .printInfo("Number of reduce tasks not specified. Defaulting to jobconf value of: "
            + reducers);
      } else {
        if (inputSummary == null) {
          inputSummary =  Utilities.getInputSummary(driverContext.getCtx(), work.getMapWork(), null);
        }
        int reducers = Utilities.estimateNumberOfReducers(conf, inputSummary, work.getMapWork(),
                                                          work.isFinalMapRed());
        rWork.setNumReduceTasks(reducers);
        console
            .printInfo("Number of reduce tasks not specified. Estimated from input data size: "
            + reducers);

      }
View Full Code Here

      l4j.info("cannot get classpath: " + e.getMessage());
    }
    jc = job;

    ObjectCache cache = ObjectCacheFactory.getCache(jc);
    ReduceWork gWork = (ReduceWork) cache.retrieve(PLAN_KEY);
    if (gWork == null) {
      gWork = Utilities.getReduceWork(job);
      cache.cache(PLAN_KEY, gWork);
    } else {
      Utilities.setReduceWork(job, gWork);
    }

    reducer = gWork.getReducer();
    reducer.setParentOperators(null); // clear out any parents as reducer is the
    // root
    isTagged = gWork.getNeedsTagging();
    try {
      keyTableDesc = gWork.getKeyDesc();
      inputKeyDeserializer = (SerDe) ReflectionUtils.newInstance(keyTableDesc
          .getDeserializerClass(), null);
      inputKeyDeserializer.initialize(null, keyTableDesc.getProperties());
      keyObjectInspector = inputKeyDeserializer.getObjectInspector();
      valueTableDesc = new TableDesc[gWork.getTagToValueDesc().size()];
      for (int tag = 0; tag < gWork.getTagToValueDesc().size(); tag++) {
        // We should initialize the SerDe with the TypeInfo when available.
        valueTableDesc[tag] = gWork.getTagToValueDesc().get(tag);
        inputValueDeserializer[tag] = (SerDe) ReflectionUtils.newInstance(
            valueTableDesc[tag].getDeserializerClass(), null);
        inputValueDeserializer[tag].initialize(null, valueTableDesc[tag]
            .getProperties());
        valueObjectInspector[tag] = inputValueDeserializer[tag]
View Full Code Here

    Context ctx = driverContext.getCtx();
    boolean ctxCreated = false;
    Path emptyScratchDir;

    MapWork mWork = work.getMapWork();
    ReduceWork rWork = work.getReduceWork();

    try {
      if (ctx == null) {
        ctx = new Context(job);
        ctxCreated = true;
      }

      emptyScratchDir = ctx.getMRTmpPath();
      FileSystem fs = emptyScratchDir.getFileSystem(job);
      fs.mkdirs(emptyScratchDir);
    } catch (IOException e) {
      e.printStackTrace();
      console.printError("Error launching map-reduce job", "\n"
          + org.apache.hadoop.util.StringUtils.stringifyException(e));
      return 5;
    }

    ShimLoader.getHadoopShims().prepareJobOutput(job);
    //See the javadoc on HiveOutputFormatImpl and HadoopShims.prepareJobOutput()
    job.setOutputFormat(HiveOutputFormatImpl.class);

    job.setMapperClass(ExecMapper.class);

    job.setMapOutputKeyClass(HiveKey.class);
    job.setMapOutputValueClass(BytesWritable.class);

    try {
      job.setPartitionerClass((Class<? extends Partitioner>) (Class.forName(HiveConf.getVar(job,
          HiveConf.ConfVars.HIVEPARTITIONER))));
    } catch (ClassNotFoundException e) {
      throw new RuntimeException(e.getMessage());
    }

    if (mWork.getNumMapTasks() != null) {
      job.setNumMapTasks(mWork.getNumMapTasks().intValue());
    }

    if (mWork.getMaxSplitSize() != null) {
      HiveConf.setLongVar(job, HiveConf.ConfVars.MAPREDMAXSPLITSIZE, mWork.getMaxSplitSize().longValue());
    }

    if (mWork.getMinSplitSize() != null) {
      HiveConf.setLongVar(job, HiveConf.ConfVars.MAPREDMINSPLITSIZE, mWork.getMinSplitSize().longValue());
    }

    if (mWork.getMinSplitSizePerNode() != null) {
      HiveConf.setLongVar(job, HiveConf.ConfVars.MAPREDMINSPLITSIZEPERNODE, mWork.getMinSplitSizePerNode().longValue());
    }

    if (mWork.getMinSplitSizePerRack() != null) {
      HiveConf.setLongVar(job, HiveConf.ConfVars.MAPREDMINSPLITSIZEPERRACK, mWork.getMinSplitSizePerRack().longValue());
    }

    job.setNumReduceTasks(rWork != null ? rWork.getNumReduceTasks().intValue() : 0);
    job.setReducerClass(ExecReducer.class);

    // set input format information if necessary
    setInputAttributes(job);

    // Turn on speculative execution for reducers
    boolean useSpeculativeExecReducers = HiveConf.getBoolVar(job,
        HiveConf.ConfVars.HIVESPECULATIVEEXECREDUCERS);
    HiveConf.setBoolVar(job, HiveConf.ConfVars.HADOOPSPECULATIVEEXECREDUCERS,
        useSpeculativeExecReducers);

    String inpFormat = HiveConf.getVar(job, HiveConf.ConfVars.HIVEINPUTFORMAT);
    if ((inpFormat == null) || (!StringUtils.isNotBlank(inpFormat))) {
      inpFormat = ShimLoader.getHadoopShims().getInputFormatClassName();
    }

    if (mWork.isUseBucketizedHiveInputFormat()) {
      inpFormat = BucketizedHiveInputFormat.class.getName();
    }

    LOG.info("Using " + inpFormat);

    try {
      job.setInputFormat((Class<? extends InputFormat>) (Class.forName(inpFormat)));
    } catch (ClassNotFoundException e) {
      throw new RuntimeException(e.getMessage());
    }


    // No-Op - we don't really write anything here ..
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(Text.class);

    // Transfer HIVEAUXJARS and HIVEADDEDJARS to "tmpjars" so hadoop understands
    // it
    String auxJars = HiveConf.getVar(job, HiveConf.ConfVars.HIVEAUXJARS);
    String addedJars = HiveConf.getVar(job, HiveConf.ConfVars.HIVEADDEDJARS);
    if (StringUtils.isNotBlank(auxJars) || StringUtils.isNotBlank(addedJars)) {
      String allJars = StringUtils.isNotBlank(auxJars) ? (StringUtils.isNotBlank(addedJars) ? addedJars
          + "," + auxJars
          : auxJars)
          : addedJars;
      LOG.info("adding libjars: " + allJars);
      initializeFiles("tmpjars", allJars);
    }

    // Transfer HIVEADDEDFILES to "tmpfiles" so hadoop understands it
    String addedFiles = HiveConf.getVar(job, HiveConf.ConfVars.HIVEADDEDFILES);
    if (StringUtils.isNotBlank(addedFiles)) {
      initializeFiles("tmpfiles", addedFiles);
    }
    int returnVal = 0;
    boolean noName = StringUtils.isEmpty(HiveConf.getVar(job, HiveConf.ConfVars.HADOOPJOBNAME));

    if (noName) {
      // This is for a special case to ensure unit tests pass
      HiveConf.setVar(job, HiveConf.ConfVars.HADOOPJOBNAME, "JOB" + Utilities.randGen.nextInt());
    }
    String addedArchives = HiveConf.getVar(job, HiveConf.ConfVars.HIVEADDEDARCHIVES);
    // Transfer HIVEADDEDARCHIVES to "tmparchives" so hadoop understands it
    if (StringUtils.isNotBlank(addedArchives)) {
      initializeFiles("tmparchives", addedArchives);
    }

    try{
      MapredLocalWork localwork = mWork.getMapLocalWork();
      if (localwork != null && localwork.hasStagedAlias()) {
        if (!ShimLoader.getHadoopShims().isLocalMode(job)) {
          Path localPath = localwork.getTmpPath();
          Path hdfsPath = mWork.getTmpHDFSPath();

          FileSystem hdfs = hdfsPath.getFileSystem(job);
          FileSystem localFS = localPath.getFileSystem(job);
          FileStatus[] hashtableFiles = localFS.listStatus(localPath);
          int fileNumber = hashtableFiles.length;
          String[] fileNames = new String[fileNumber];

          for ( int i = 0; i < fileNumber; i++){
            fileNames[i] = hashtableFiles[i].getPath().getName();
          }

          //package and compress all the hashtable files to an archive file
          String stageId = this.getId();
          String archiveFileName = Utilities.generateTarFileName(stageId);
          localwork.setStageID(stageId);

          CompressionUtils.tar(localPath.toUri().getPath(), fileNames,archiveFileName);
          Path archivePath = Utilities.generateTarPath(localPath, stageId);
          LOG.info("Archive "+ hashtableFiles.length+" hash table files to " + archivePath);

          //upload archive file to hdfs
          Path hdfsFilePath =Utilities.generateTarPath(hdfsPath, stageId);
          short replication = (short) job.getInt("mapred.submit.replication", 10);
          hdfs.setReplication(hdfsFilePath, replication);
          hdfs.copyFromLocalFile(archivePath, hdfsFilePath);
          LOG.info("Upload 1 archive file  from" + archivePath + " to: " + hdfsFilePath);

          //add the archive file to distributed cache
          DistributedCache.createSymlink(job);
          DistributedCache.addCacheArchive(hdfsFilePath.toUri(), job);
          LOG.info("Add 1 archive file to distributed cache. Archive file: " + hdfsFilePath.toUri());
        }
      }
      work.configureJobConf(job);
      List<Path> inputPaths = Utilities.getInputPaths(job, mWork, emptyScratchDir, ctx);
      Utilities.setInputPaths(job, inputPaths);

      Utilities.setMapRedWork(job, work, ctx.getMRTmpPath());

      if (mWork.getSamplingType() > 0 && rWork != null && rWork.getNumReduceTasks() > 1) {
        try {
          handleSampling(driverContext, mWork, job, conf);
          job.setPartitionerClass(HiveTotalOrderPartitioner.class);
        } catch (IllegalStateException e) {
          console.printInfo("Not enough sampling data.. Rolling back to single reducer task");
          rWork.setNumReduceTasks(1);
          job.setNumReduceTasks(1);
        } catch (Exception e) {
          LOG.error("Sampling error", e);
          console.printError(e.toString(),
              "\n" + org.apache.hadoop.util.StringUtils.stringifyException(e));
          rWork.setNumReduceTasks(1);
          job.setNumReduceTasks(1);
        }
      }

      // remove the pwd from conf file so that job tracker doesn't show this
      // logs
      String pwd = HiveConf.getVar(job, HiveConf.ConfVars.METASTOREPWD);
      if (pwd != null) {
        HiveConf.setVar(job, HiveConf.ConfVars.METASTOREPWD, "HIVE");
      }
      JobClient jc = new JobClient(job);
      // make this client wait if job tracker is not behaving well.
      Throttle.checkJobTracker(job, LOG);

      if (mWork.isGatheringStats() || (rWork != null && rWork.isGatheringStats())) {
        // initialize stats publishing table
        StatsPublisher statsPublisher;
        StatsFactory factory = StatsFactory.newFactory(job);
        if (factory != null) {
          statsPublisher = factory.getStatsPublisher();
          if (!statsPublisher.init(job)) { // creating stats table if not exists
            if (HiveConf.getBoolVar(job, HiveConf.ConfVars.HIVE_STATS_RELIABLE)) {
              throw
                new HiveException(ErrorMsg.STATSPUBLISHER_INITIALIZATION_ERROR.getErrorCodedMsg());
            }
          }
        }
      }

      Utilities.createTmpDirs(job, mWork);
      Utilities.createTmpDirs(job, rWork);

      // Finally SUBMIT the JOB!
      rj = jc.submitJob(job);
      // replace it back
      if (pwd != null) {
        HiveConf.setVar(job, HiveConf.ConfVars.METASTOREPWD, pwd);
      }

      returnVal = jobExecHelper.progress(rj, jc, ctx.getHiveTxnManager());
      success = (returnVal == 0);
    } catch (Exception e) {
      e.printStackTrace();
      String mesg = " with exception '" + Utilities.getNameMessage(e) + "'";
      if (rj != null) {
        mesg = "Ended Job = " + rj.getJobID() + mesg;
      } else {
        mesg = "Job Submission failed" + mesg;
      }

      // Has to use full name to make sure it does not conflict with
      // org.apache.commons.lang.StringUtils
      console.printError(mesg, "\n" + org.apache.hadoop.util.StringUtils.stringifyException(e));

      success = false;
      returnVal = 1;
    } finally {
      Utilities.clearWork(job);
      try {
        if (ctxCreated) {
          ctx.clear();
        }

        if (rj != null) {
          if (returnVal != 0) {
            rj.killJob();
          }
          HadoopJobExecHelper.runningJobs.remove(rj);
          jobID = rj.getID().toString();
        }
      } catch (Exception e) {
      }
    }

    // get the list of Dynamic partition paths
    try {
      if (rj != null) {
        if (mWork.getAliasToWork() != null) {
          for (Operator<? extends OperatorDesc> op : mWork.getAliasToWork().values()) {
            op.jobClose(job, success);
          }
        }
        if (rWork != null) {
          rWork.getReducer().jobClose(job, success);
        }
      }
    } catch (Exception e) {
      // jobClose needs to execute successfully otherwise fail task
      if (success) {
View Full Code Here

      return;
    }
    MapRedTask mapredTask = (MapRedTask) runner.getTask();

    MapWork mapWork = mapredTask.getWork().getMapWork();
    ReduceWork reduceWork = mapredTask.getWork().getReduceWork();
    List<Operator> operators = new ArrayList<Operator>(mapWork.getAliasToWork().values());
    if (reduceWork != null) {
      operators.add(reduceWork.getReducer());
    }
    final List<String> statKeys = new ArrayList<String>(1);
    NodeUtils.iterate(operators, FileSinkOperator.class, new Function<FileSinkOperator>() {
      public void apply(FileSinkOperator fsOp) {
        if (fsOp.getConf().isGatherStats()) {
View Full Code Here

    return unionWork;
  }

  public ReduceWork createReduceWork(GenTezProcContext context, Operator<?> root, TezWork tezWork) {
    assert !root.getParentOperators().isEmpty();
    ReduceWork reduceWork = new ReduceWork("Reducer "+ (++sequenceNumber));
    LOG.debug("Adding reduce work (" + reduceWork.getName() + ") for " + root);
    reduceWork.setReducer(root);
    reduceWork.setNeedsTagging(GenMapRedUtils.needsTagging(reduceWork));

    // All parents should be reduce sinks. We pick the one we just walked
    // to choose the number of reducers. In the join/union case they will
    // all be -1. In sort/order case where it matters there will be only
    // one parent.
    assert context.parentOfRoot instanceof ReduceSinkOperator;
    ReduceSinkOperator reduceSink = (ReduceSinkOperator) context.parentOfRoot;

    reduceWork.setNumReduceTasks(reduceSink.getConf().getNumReducers());

    setupReduceSink(context, reduceWork, reduceSink);

    tezWork.add(reduceWork);
    TezEdgeProperty edgeProp = new TezEdgeProperty(EdgeType.SIMPLE_EDGE);
View Full Code Here

      if (!(task instanceof MapRedTask) || !((MapRedTask)task).getWork().isFinalMapRed()) {
        continue; // this could be replaced by bucketing on RS + bucketed fetcher for next MR
      }
      MapredWork mrWork = ((MapRedTask) task).getWork();
      MapWork mapWork = mrWork.getMapWork();
      ReduceWork reduceWork = mrWork.getReduceWork();

      if (reduceWork == null || reduceWork.getNumReduceTasks() != 1
          || mapWork.getAliasToWork().size() != 1 || mapWork.getSamplingType() > 0
          || reduceWork.getReducer() == null) {
        continue;
      }
      Operator<?> operator = mapWork.getAliasToWork().values().iterator().next();
      if (!(operator instanceof TableScanOperator)) {
        continue;
      }
      ReduceSinkOperator child =
          OperatorUtils.findSingleOperator(operator, ReduceSinkOperator.class);
      if (child == null ||
          child.getConf().getNumReducers() != 1 || !child.getConf().getPartitionCols().isEmpty()) {
        continue;
      }
      child.getConf().setNumReducers(-1);
      reduceWork.setNumReduceTasks(-1);
      mapWork.setSamplingType(MapWork.SAMPLING_ON_START);
    }
    return pctx;
  }
View Full Code Here

    if (!warnings.isEmpty()) {
      for (String w : warnings) {
        warn(w);
      }
    }
    ReduceWork redWork = mrWrk.getReduceWork();
    if (redWork != null) {
      warnings = new MapJoinCheck(mrTsk.toString()).analyze(redWork);
      if (!warnings.isEmpty()) {
        for (String w : warnings) {
          warn(w);
View Full Code Here

  private void checkTezReducer(TezWork tzWrk) throws SemanticException {
    for(BaseWork wrk : tzWrk.getAllWork() ) {
      if ( !(wrk instanceof ReduceWork) ) {
        continue;
      }
      ReduceWork rWork = (ReduceWork) wrk;
      Operator<? extends OperatorDesc> reducer = ((ReduceWork)wrk).getReducer();
      if ( reducer instanceof JoinOperator ) {
        Map<Integer, ExtractReduceSinkInfo.Info> rsInfo =
            new HashMap<Integer, ExtractReduceSinkInfo.Info>();
        for(Map.Entry<Integer, String> e : rWork.getTagToInput().entrySet()) {
          rsInfo.putAll(getReducerInfo(tzWrk, rWork.getName(), e.getValue()));
        }
        checkForCrossProduct(rWork.getName(), reducer, rsInfo);
      }
    }
  }
View Full Code Here

TOP

Related Classes of org.apache.hadoop.hive.ql.plan.ReduceWork

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.