Package org.apache.hadoop.hive.ql.plan

Examples of org.apache.hadoop.hive.ql.plan.ReduceWork


    HashMap<Operator<? extends OperatorDesc>, Task<? extends Serializable>> opTaskMap =
        opProcCtx.getOpTaskMap();
    Operator<? extends OperatorDesc> currTopOp = opProcCtx.getCurrTopOp();

    opTaskMap.put(reducer, currTask);
    plan.setReduceWork(new ReduceWork());
    plan.getReduceWork().setReducer(reducer);
    ReduceSinkDesc desc = op.getConf();

    plan.getReduceWork().setNumReduceTasks(desc.getNumReducers());
View Full Code Here


    HashMap<Operator<? extends OperatorDesc>, Task<? extends Serializable>> opTaskMap =
        opProcCtx.getOpTaskMap();

    opTaskMap.put(reducer, unionTask);

    plan.setReduceWork(new ReduceWork());
    plan.getReduceWork().setReducer(reducer);
    plan.getReduceWork().setReducer(reducer);
    ReduceSinkDesc desc = op.getConf();

    plan.getReduceWork().setNumReduceTasks(desc.getNumReducers());
View Full Code Here

    Task<? extends Serializable> childTask = TaskFactory.get(childPlan, parseCtx
        .getConf());
    Operator<? extends OperatorDesc> reducer = cRS.getChildOperators().get(0);

    // Add the reducer
    ReduceWork rWork = new ReduceWork();
    childPlan.setReduceWork(rWork);
    rWork.setReducer(reducer);
    ReduceSinkDesc desc = cRS.getConf();
    childPlan.getReduceWork().setNumReduceTasks(new Integer(desc.getNumReducers()));

    opProcCtx.getOpTaskMap().put(reducer, childTask);
View Full Code Here

  /**
   * Set the number of reducers for the mapred work.
   */
  private void setNumberOfReducers() throws IOException {
    ReduceWork rWork = work.getReduceWork();
    // this is a temporary hack to fix things that are not fixed in the compiler
    Integer numReducersFromWork = rWork == null ? 0 : rWork.getNumReduceTasks();

    if (rWork == null) {
      console
          .printInfo("Number of reduce tasks is set to 0 since there's no reduce operator");
    } else {
      if (numReducersFromWork >= 0) {
        console.printInfo("Number of reduce tasks determined at compile time: "
            + rWork.getNumReduceTasks());
      } else if (job.getNumReduceTasks() > 0) {
        int reducers = job.getNumReduceTasks();
        rWork.setNumReduceTasks(reducers);
        console
            .printInfo("Number of reduce tasks not specified. Defaulting to jobconf value of: "
            + reducers);
      } else {
        if (inputSummary == null) {
          inputSummary =  Utilities.getInputSummary(driverContext.getCtx(), work.getMapWork(), null);
        }
        int reducers = Utilities.estimateNumberOfReducers(conf, inputSummary, work.getMapWork(),
                                                          work.isFinalMapRed());
        rWork.setNumReduceTasks(reducers);
        console
            .printInfo("Number of reduce tasks not specified. Estimated from input data size: "
            + reducers);

      }
View Full Code Here

          .getContextClassLoader()).getURLs()));
    } catch (Exception e) {
      l4j.info("cannot get classpath: " + e.getMessage());
    }
    jc = job;
    ReduceWork gWork = Utilities.getReduceWork(job);
    reducer = gWork.getReducer();
    reducer.setParentOperators(null); // clear out any parents as reducer is the
    // root
    isTagged = gWork.getNeedsTagging();
    try {
      keyTableDesc = gWork.getKeyDesc();
      inputKeyDeserializer = (SerDe) ReflectionUtils.newInstance(keyTableDesc
          .getDeserializerClass(), null);
      inputKeyDeserializer.initialize(null, keyTableDesc.getProperties());
      keyObjectInspector = inputKeyDeserializer.getObjectInspector();
      valueTableDesc = new TableDesc[gWork.getTagToValueDesc().size()];
      for (int tag = 0; tag < gWork.getTagToValueDesc().size(); tag++) {
        // We should initialize the SerDe with the TypeInfo when available.
        valueTableDesc[tag] = gWork.getTagToValueDesc().get(tag);
        inputValueDeserializer[tag] = (SerDe) ReflectionUtils.newInstance(
            valueTableDesc[tag].getDeserializerClass(), null);
        inputValueDeserializer[tag].initialize(null, valueTableDesc[tag]
            .getProperties());
        valueObjectInspector[tag] = inputValueDeserializer[tag]
View Full Code Here

    boolean ctxCreated = false;
    String emptyScratchDirStr;
    Path emptyScratchDir;

    MapWork mWork = work.getMapWork();
    ReduceWork rWork = work.getReduceWork();

    try {
      if (ctx == null) {
        ctx = new Context(job);
        ctxCreated = true;
      }

      emptyScratchDirStr = ctx.getMRTmpFileURI();
      emptyScratchDir = new Path(emptyScratchDirStr);
      FileSystem fs = emptyScratchDir.getFileSystem(job);
      fs.mkdirs(emptyScratchDir);
    } catch (IOException e) {
      e.printStackTrace();
      console.printError("Error launching map-reduce job", "\n"
          + org.apache.hadoop.util.StringUtils.stringifyException(e));
      return 5;
    }

    ShimLoader.getHadoopShims().prepareJobOutput(job);
    //See the javadoc on HiveOutputFormatImpl and HadoopShims.prepareJobOutput()
    job.setOutputFormat(HiveOutputFormatImpl.class);
    job.setMapperClass(ExecMapper.class);

    job.setMapOutputKeyClass(HiveKey.class);
    job.setMapOutputValueClass(BytesWritable.class);

    try {
      job.setPartitionerClass((Class<? extends Partitioner>) (Class.forName(HiveConf.getVar(job,
          HiveConf.ConfVars.HIVEPARTITIONER))));
    } catch (ClassNotFoundException e) {
      throw new RuntimeException(e.getMessage());
    }

    if (mWork.getNumMapTasks() != null) {
      job.setNumMapTasks(mWork.getNumMapTasks().intValue());
    }

    if (mWork.getMaxSplitSize() != null) {
      HiveConf.setLongVar(job, HiveConf.ConfVars.MAPREDMAXSPLITSIZE, mWork.getMaxSplitSize().longValue());
    }

    if (mWork.getMinSplitSize() != null) {
      HiveConf.setLongVar(job, HiveConf.ConfVars.MAPREDMINSPLITSIZE, mWork.getMinSplitSize().longValue());
    }

    if (mWork.getMinSplitSizePerNode() != null) {
      HiveConf.setLongVar(job, HiveConf.ConfVars.MAPREDMINSPLITSIZEPERNODE, mWork.getMinSplitSizePerNode().longValue());
    }

    if (mWork.getMinSplitSizePerRack() != null) {
      HiveConf.setLongVar(job, HiveConf.ConfVars.MAPREDMINSPLITSIZEPERRACK, mWork.getMinSplitSizePerRack().longValue());
    }

    job.setNumReduceTasks(rWork != null ? rWork.getNumReduceTasks().intValue() : 0);
    job.setReducerClass(ExecReducer.class);

    // set input format information if necessary
    setInputAttributes(job);

    // Turn on speculative execution for reducers
    boolean useSpeculativeExecReducers = HiveConf.getBoolVar(job,
        HiveConf.ConfVars.HIVESPECULATIVEEXECREDUCERS);
    HiveConf.setBoolVar(job, HiveConf.ConfVars.HADOOPSPECULATIVEEXECREDUCERS,
        useSpeculativeExecReducers);

    String inpFormat = HiveConf.getVar(job, HiveConf.ConfVars.HIVEINPUTFORMAT);
    if ((inpFormat == null) || (!StringUtils.isNotBlank(inpFormat))) {
      inpFormat = ShimLoader.getHadoopShims().getInputFormatClassName();
    }

    if (mWork.isUseBucketizedHiveInputFormat()) {
      inpFormat = BucketizedHiveInputFormat.class.getName();
    }

    LOG.info("Using " + inpFormat);

    try {
      job.setInputFormat((Class<? extends InputFormat>) (Class.forName(inpFormat)));
    } catch (ClassNotFoundException e) {
      throw new RuntimeException(e.getMessage());
    }


    // No-Op - we don't really write anything here ..
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(Text.class);

    // Transfer HIVEAUXJARS and HIVEADDEDJARS to "tmpjars" so hadoop understands
    // it
    String auxJars = HiveConf.getVar(job, HiveConf.ConfVars.HIVEAUXJARS);
    String addedJars = HiveConf.getVar(job, HiveConf.ConfVars.HIVEADDEDJARS);
    if (StringUtils.isNotBlank(auxJars) || StringUtils.isNotBlank(addedJars)) {
      String allJars = StringUtils.isNotBlank(auxJars) ? (StringUtils.isNotBlank(addedJars) ? addedJars
          + "," + auxJars
          : auxJars)
          : addedJars;
      LOG.info("adding libjars: " + allJars);
      initializeFiles("tmpjars", allJars);
    }

    // Transfer HIVEADDEDFILES to "tmpfiles" so hadoop understands it
    String addedFiles = HiveConf.getVar(job, HiveConf.ConfVars.HIVEADDEDFILES);
    if (StringUtils.isNotBlank(addedFiles)) {
      initializeFiles("tmpfiles", addedFiles);
    }
    int returnVal = 0;
    boolean noName = StringUtils.isEmpty(HiveConf.getVar(job, HiveConf.ConfVars.HADOOPJOBNAME));

    if (noName) {
      // This is for a special case to ensure unit tests pass
      HiveConf.setVar(job, HiveConf.ConfVars.HADOOPJOBNAME, "JOB" + Utilities.randGen.nextInt());
    }
    String addedArchives = HiveConf.getVar(job, HiveConf.ConfVars.HIVEADDEDARCHIVES);
    // Transfer HIVEADDEDARCHIVES to "tmparchives" so hadoop understands it
    if (StringUtils.isNotBlank(addedArchives)) {
      initializeFiles("tmparchives", addedArchives);
    }

    try{
      MapredLocalWork localwork = mWork.getMapLocalWork();
      if (localwork != null) {
        if (!ShimLoader.getHadoopShims().isLocalMode(job)) {
          Path localPath = new Path(localwork.getTmpFileURI());
          Path hdfsPath = new Path(mWork.getTmpHDFSFileURI());

          FileSystem hdfs = hdfsPath.getFileSystem(job);
          FileSystem localFS = localPath.getFileSystem(job);
          FileStatus[] hashtableFiles = localFS.listStatus(localPath);
          int fileNumber = hashtableFiles.length;
          String[] fileNames = new String[fileNumber];

          for ( int i = 0; i < fileNumber; i++){
            fileNames[i] = hashtableFiles[i].getPath().getName();
          }

          //package and compress all the hashtable files to an archive file
          String parentDir = localPath.toUri().getPath();
          String stageId = this.getId();
          String archiveFileURI = Utilities.generateTarURI(parentDir, stageId);
          String archiveFileName = Utilities.generateTarFileName(stageId);
          localwork.setStageID(stageId);

          CompressionUtils.tar(parentDir, fileNames,archiveFileName);
          Path archivePath = new Path(archiveFileURI);
          LOG.info("Archive "+ hashtableFiles.length+" hash table files to " + archiveFileURI);

          //upload archive file to hdfs
          String hdfsFile =Utilities.generateTarURI(hdfsPath, stageId);
          Path hdfsFilePath = new Path(hdfsFile);
          short replication = (short) job.getInt("mapred.submit.replication", 10);
          hdfs.setReplication(hdfsFilePath, replication);
          hdfs.copyFromLocalFile(archivePath, hdfsFilePath);
          LOG.info("Upload 1 archive file  from" + archivePath + " to: " + hdfsFilePath);

          //add the archive file to distributed cache
          DistributedCache.createSymlink(job);
          DistributedCache.addCacheArchive(hdfsFilePath.toUri(), job);
          LOG.info("Add 1 archive file to distributed cache. Archive file: " + hdfsFilePath.toUri());
        }
      }
      work.configureJobConf(job);
      List<Path> inputPaths = Utilities.getInputPaths(job, mWork, emptyScratchDirStr, ctx);
      Utilities.setInputPaths(job, inputPaths);

      Utilities.setMapRedWork(job, work, ctx.getMRTmpFileURI());

      if (mWork.getSamplingType() > 0 && rWork != null && rWork.getNumReduceTasks() > 1) {
        try {
          handleSampling(driverContext, mWork, job, conf);
          job.setPartitionerClass(HiveTotalOrderPartitioner.class);
        } catch (Exception e) {
          console.printInfo("Not enough sampling data.. Rolling back to single reducer task");
          rWork.setNumReduceTasks(1);
          job.setNumReduceTasks(1);
        }
      }

      // remove the pwd from conf file so that job tracker doesn't show this
      // logs
      String pwd = HiveConf.getVar(job, HiveConf.ConfVars.METASTOREPWD);
      if (pwd != null) {
        HiveConf.setVar(job, HiveConf.ConfVars.METASTOREPWD, "HIVE");
      }
      JobClient jc = new JobClient(job);
      // make this client wait if job trcker is not behaving well.
      Throttle.checkJobTracker(job, LOG);

      if (mWork.isGatheringStats() || (rWork != null && rWork.isGatheringStats())) {
        // initialize stats publishing table
        StatsPublisher statsPublisher;
        String statsImplementationClass = HiveConf.getVar(job, HiveConf.ConfVars.HIVESTATSDBCLASS);
        if (StatsFactory.setImplementation(statsImplementationClass, job)) {
          statsPublisher = StatsFactory.getStatsPublisher();
          if (!statsPublisher.init(job)) { // creating stats table if not exists
            if (HiveConf.getBoolVar(job, HiveConf.ConfVars.HIVE_STATS_RELIABLE)) {
              throw
                new HiveException(ErrorMsg.STATSPUBLISHER_INITIALIZATION_ERROR.getErrorCodedMsg());
            }
          }
        }
      }

      Utilities.createTmpDirs(job, mWork);
      Utilities.createTmpDirs(job, rWork);

      // Finally SUBMIT the JOB!
      rj = jc.submitJob(job);
      // replace it back
      if (pwd != null) {
        HiveConf.setVar(job, HiveConf.ConfVars.METASTOREPWD, pwd);
      }

      returnVal = jobExecHelper.progress(rj, jc);
      success = (returnVal == 0);
    } catch (Exception e) {
      e.printStackTrace();
      String mesg = " with exception '" + Utilities.getNameMessage(e) + "'";
      if (rj != null) {
        mesg = "Ended Job = " + rj.getJobID() + mesg;
      } else {
        mesg = "Job Submission failed" + mesg;
      }

      // Has to use full name to make sure it does not conflict with
      // org.apache.commons.lang.StringUtils
      console.printError(mesg, "\n" + org.apache.hadoop.util.StringUtils.stringifyException(e));

      success = false;
      returnVal = 1;
    } finally {
      Utilities.clearWork(job);
      try {
        if (ctxCreated) {
          ctx.clear();
        }

        if (rj != null) {
          if (returnVal != 0) {
            rj.killJob();
          }
          HadoopJobExecHelper.runningJobKillURIs.remove(rj.getJobID());
          jobID = rj.getID().toString();
        }
      } catch (Exception e) {
      }
    }

    // get the list of Dynamic partition paths
    try {
      if (rj != null) {
        JobCloseFeedBack feedBack = new JobCloseFeedBack();
        if (mWork.getAliasToWork() != null) {
          for (Operator<? extends OperatorDesc> op : mWork.getAliasToWork().values()) {
            op.jobClose(job, success, feedBack);
          }
        }
        if (rWork != null) {
          rWork.getReducer().jobClose(job, success, feedBack);
        }
      }
    } catch (Exception e) {
      // jobClose needs to execute successfully otherwise fail task
      if (success) {
View Full Code Here

        .getReduceSinkDesc(Utilities.makeList(getStringColumn("key")),
        Utilities.makeList(getStringColumn("value")), outputColumns, true,
        -1, 1, -1));

    addMapWork(mr, src, "a", op1);
    ReduceWork rWork = new ReduceWork();
    rWork.setNumReduceTasks(Integer.valueOf(1));
    rWork.setKeyDesc(op1.getConf().getKeySerializeInfo());
    rWork.getTagToValueDesc().add(op1.getConf().getValueSerializeInfo());
    mr.setReduceWork(rWork);

    // reduce side work
    Operator<FileSinkDesc> op3 = OperatorFactory.get(new FileSinkDesc(tmpdir
        + "mapredplan1.out", Utilities.defaultTd, false));

    Operator<ExtractDesc> op2 = OperatorFactory.get(new ExtractDesc(
        getStringColumn(Utilities.ReduceField.VALUE.toString())), op3);

    rWork.setReducer(op2);
  }
View Full Code Here

        Utilities
        .makeList(getStringColumn("key"), getStringColumn("value")),
        outputColumns, false, -1, 1, -1));

    addMapWork(mr, src, "a", op1);
    ReduceWork rWork = new ReduceWork();
    rWork.setNumReduceTasks(Integer.valueOf(1));
    rWork.setKeyDesc(op1.getConf().getKeySerializeInfo());
    rWork.getTagToValueDesc().add(op1.getConf().getValueSerializeInfo());
    mr.setReduceWork(rWork);

    // reduce side work
    Operator<FileSinkDesc> op4 = OperatorFactory.get(new FileSinkDesc(tmpdir
        + "mapredplan2.out", Utilities.defaultTd, false));

    Operator<FilterDesc> op3 = OperatorFactory.get(getTestFilterDesc("0"), op4);

    Operator<ExtractDesc> op2 = OperatorFactory.get(new ExtractDesc(
        getStringColumn(Utilities.ReduceField.VALUE.toString())), op3);

    rWork.setReducer(op2);
  }
View Full Code Here

        .getReduceSinkDesc(Utilities.makeList(getStringColumn("key")),
        Utilities.makeList(getStringColumn("key")), outputColumns, true,
        Byte.valueOf((byte) 1), Integer.MAX_VALUE, -1));

    addMapWork(mr, src2, "b", op2);
    ReduceWork rWork = new ReduceWork();
    rWork.setNumReduceTasks(Integer.valueOf(5));
    rWork.setNeedsTagging(true);
    rWork.setKeyDesc(op1.getConf().getKeySerializeInfo());
    rWork.getTagToValueDesc().add(op1.getConf().getValueSerializeInfo());

    mr.setReduceWork(rWork);
    rWork.getTagToValueDesc().add(op2.getConf().getValueSerializeInfo());

    // reduce side work
    Operator<FileSinkDesc> op4 = OperatorFactory.get(new FileSinkDesc(tmpdir
        + "mapredplan3.out", Utilities.defaultTd, false));

    Operator<SelectDesc> op5 = OperatorFactory.get(new SelectDesc(Utilities
        .makeList(new ExprNodeFieldDesc(TypeInfoFactory.stringTypeInfo,
        new ExprNodeColumnDesc(TypeInfoFactory.getListTypeInfo(TypeInfoFactory.stringTypeInfo),
        Utilities.ReduceField.VALUE.toString(), "", false), "0", false)),
        Utilities.makeList(outputColumns.get(0))), op4);

    rWork.setReducer(op5);
  }
View Full Code Here

    Operator<SelectDesc> op4 = OperatorFactory.get(new SelectDesc(Utilities
        .makeList(getStringColumn("key"), getStringColumn("value")),
        outputColumns), op0);

    addMapWork(mr, src, "a", op4);
    ReduceWork rWork = new ReduceWork();
    rWork.setKeyDesc(op1.getConf().getKeySerializeInfo());
    rWork.getTagToValueDesc().add(op1.getConf().getValueSerializeInfo());
    rWork.setNumReduceTasks(Integer.valueOf(1));
    mr.setReduceWork(rWork);

    // reduce side work
    Operator<FileSinkDesc> op3 = OperatorFactory.get(new FileSinkDesc(tmpdir
        + "mapredplan4.out", Utilities.defaultTd, false));

    Operator<ExtractDesc> op2 = OperatorFactory.get(new ExtractDesc(
        getStringColumn(Utilities.ReduceField.VALUE.toString())), op3);

    rWork.setReducer(op2);
  }
View Full Code Here

TOP

Related Classes of org.apache.hadoop.hive.ql.plan.ReduceWork

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.