Package org.apache.hadoop.hive.ql.plan

Examples of org.apache.hadoop.hive.ql.plan.MapWork


      if (confirmedPartns.size() > 0) {
        Table source = queryBlock.getMetaData().getTableForAlias(alias);
        partitions = new PrunedPartitionList(source, confirmedPartns, false);
      }

      MapWork w = utils.createMapWork(context, tableScan, tezWork, partitions);
      w.setGatheringStats(true);

      return true;
      }
    }
View Full Code Here


   */
  private Schema getSchema(JobConf job, FileSplit split) throws AvroSerdeException, IOException {
    FileSystem fs = split.getPath().getFileSystem(job);
    // Inside of a MR job, we can pull out the actual properties
    if(AvroSerdeUtils.insideMRJob(job)) {
      MapWork mapWork = Utilities.getMapWork(job);

      // Iterate over the Path -> Partition descriptions to find the partition
      // that matches our input split.
      for (Map.Entry<String,PartitionDesc> pathsAndParts: mapWork.getPathToPartitionInfo().entrySet()){
        String partitionPath = pathsAndParts.getKey();
        if(pathIsInPartition(split.getPath(), partitionPath)) {
          if(LOG.isInfoEnabled()) {
              LOG.info("Matching partition " + partitionPath +
                      " with input split " + split);
View Full Code Here

    Context ctx = driverContext.getCtx();
    boolean ctxCreated = false;
    String emptyScratchDirStr;
    Path emptyScratchDir;

    MapWork mWork = work.getMapWork();
    ReduceWork rWork = work.getReduceWork();

    try {
      if (ctx == null) {
        ctx = new Context(job);
        ctxCreated = true;
      }

      emptyScratchDirStr = ctx.getMRTmpFileURI();
      emptyScratchDir = new Path(emptyScratchDirStr);
      FileSystem fs = emptyScratchDir.getFileSystem(job);
      fs.mkdirs(emptyScratchDir);
    } catch (IOException e) {
      e.printStackTrace();
      console.printError("Error launching map-reduce job", "\n"
          + org.apache.hadoop.util.StringUtils.stringifyException(e));
      return 5;
    }

    ShimLoader.getHadoopShims().prepareJobOutput(job);
    //See the javadoc on HiveOutputFormatImpl and HadoopShims.prepareJobOutput()
    job.setOutputFormat(HiveOutputFormatImpl.class);
    job.setMapperClass(ExecMapper.class);

    job.setMapOutputKeyClass(HiveKey.class);
    job.setMapOutputValueClass(BytesWritable.class);

    try {
      job.setPartitionerClass((Class<? extends Partitioner>) (Class.forName(HiveConf.getVar(job,
          HiveConf.ConfVars.HIVEPARTITIONER))));
    } catch (ClassNotFoundException e) {
      throw new RuntimeException(e.getMessage());
    }

    if (mWork.getNumMapTasks() != null) {
      job.setNumMapTasks(mWork.getNumMapTasks().intValue());
    }

    if (mWork.getMaxSplitSize() != null) {
      HiveConf.setLongVar(job, HiveConf.ConfVars.MAPREDMAXSPLITSIZE, mWork.getMaxSplitSize().longValue());
    }

    if (mWork.getMinSplitSize() != null) {
      HiveConf.setLongVar(job, HiveConf.ConfVars.MAPREDMINSPLITSIZE, mWork.getMinSplitSize().longValue());
    }

    if (mWork.getMinSplitSizePerNode() != null) {
      HiveConf.setLongVar(job, HiveConf.ConfVars.MAPREDMINSPLITSIZEPERNODE, mWork.getMinSplitSizePerNode().longValue());
    }

    if (mWork.getMinSplitSizePerRack() != null) {
      HiveConf.setLongVar(job, HiveConf.ConfVars.MAPREDMINSPLITSIZEPERRACK, mWork.getMinSplitSizePerRack().longValue());
    }

    job.setNumReduceTasks(rWork != null ? rWork.getNumReduceTasks().intValue() : 0);
    job.setReducerClass(ExecReducer.class);

    // set input format information if necessary
    setInputAttributes(job);

    // Turn on speculative execution for reducers
    boolean useSpeculativeExecReducers = HiveConf.getBoolVar(job,
        HiveConf.ConfVars.HIVESPECULATIVEEXECREDUCERS);
    HiveConf.setBoolVar(job, HiveConf.ConfVars.HADOOPSPECULATIVEEXECREDUCERS,
        useSpeculativeExecReducers);

    String inpFormat = HiveConf.getVar(job, HiveConf.ConfVars.HIVEINPUTFORMAT);
    if ((inpFormat == null) || (!StringUtils.isNotBlank(inpFormat))) {
      inpFormat = ShimLoader.getHadoopShims().getInputFormatClassName();
    }

    if (mWork.isUseBucketizedHiveInputFormat()) {
      inpFormat = BucketizedHiveInputFormat.class.getName();
    }

    LOG.info("Using " + inpFormat);

    try {
      job.setInputFormat((Class<? extends InputFormat>) (Class.forName(inpFormat)));
    } catch (ClassNotFoundException e) {
      throw new RuntimeException(e.getMessage());
    }


    // No-Op - we don't really write anything here ..
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(Text.class);

    // Transfer HIVEAUXJARS and HIVEADDEDJARS to "tmpjars" so hadoop understands
    // it
    String auxJars = HiveConf.getVar(job, HiveConf.ConfVars.HIVEAUXJARS);
    String addedJars = HiveConf.getVar(job, HiveConf.ConfVars.HIVEADDEDJARS);
    if (StringUtils.isNotBlank(auxJars) || StringUtils.isNotBlank(addedJars)) {
      String allJars = StringUtils.isNotBlank(auxJars) ? (StringUtils.isNotBlank(addedJars) ? addedJars
          + "," + auxJars
          : auxJars)
          : addedJars;
      LOG.info("adding libjars: " + allJars);
      initializeFiles("tmpjars", allJars);
    }

    // Transfer HIVEADDEDFILES to "tmpfiles" so hadoop understands it
    String addedFiles = HiveConf.getVar(job, HiveConf.ConfVars.HIVEADDEDFILES);
    if (StringUtils.isNotBlank(addedFiles)) {
      initializeFiles("tmpfiles", addedFiles);
    }
    int returnVal = 0;
    boolean noName = StringUtils.isEmpty(HiveConf.getVar(job, HiveConf.ConfVars.HADOOPJOBNAME));

    if (noName) {
      // This is for a special case to ensure unit tests pass
      HiveConf.setVar(job, HiveConf.ConfVars.HADOOPJOBNAME, "JOB" + Utilities.randGen.nextInt());
    }
    String addedArchives = HiveConf.getVar(job, HiveConf.ConfVars.HIVEADDEDARCHIVES);
    // Transfer HIVEADDEDARCHIVES to "tmparchives" so hadoop understands it
    if (StringUtils.isNotBlank(addedArchives)) {
      initializeFiles("tmparchives", addedArchives);
    }

    try{
      MapredLocalWork localwork = mWork.getMapLocalWork();
      if (localwork != null) {
        if (!ShimLoader.getHadoopShims().isLocalMode(job)) {
          Path localPath = new Path(localwork.getTmpFileURI());
          Path hdfsPath = new Path(mWork.getTmpHDFSFileURI());

          FileSystem hdfs = hdfsPath.getFileSystem(job);
          FileSystem localFS = localPath.getFileSystem(job);
          FileStatus[] hashtableFiles = localFS.listStatus(localPath);
          int fileNumber = hashtableFiles.length;
          String[] fileNames = new String[fileNumber];

          for ( int i = 0; i < fileNumber; i++){
            fileNames[i] = hashtableFiles[i].getPath().getName();
          }

          //package and compress all the hashtable files to an archive file
          String parentDir = localPath.toUri().getPath();
          String stageId = this.getId();
          String archiveFileURI = Utilities.generateTarURI(parentDir, stageId);
          String archiveFileName = Utilities.generateTarFileName(stageId);
          localwork.setStageID(stageId);

          CompressionUtils.tar(parentDir, fileNames,archiveFileName);
          Path archivePath = new Path(archiveFileURI);
          LOG.info("Archive "+ hashtableFiles.length+" hash table files to " + archiveFileURI);

          //upload archive file to hdfs
          String hdfsFile =Utilities.generateTarURI(hdfsPath, stageId);
          Path hdfsFilePath = new Path(hdfsFile);
          short replication = (short) job.getInt("mapred.submit.replication", 10);
          hdfs.setReplication(hdfsFilePath, replication);
          hdfs.copyFromLocalFile(archivePath, hdfsFilePath);
          LOG.info("Upload 1 archive file  from" + archivePath + " to: " + hdfsFilePath);

          //add the archive file to distributed cache
          DistributedCache.createSymlink(job);
          DistributedCache.addCacheArchive(hdfsFilePath.toUri(), job);
          LOG.info("Add 1 archive file to distributed cache. Archive file: " + hdfsFilePath.toUri());
        }
      }
      work.configureJobConf(job);
      List<Path> inputPaths = Utilities.getInputPaths(job, mWork, emptyScratchDirStr, ctx);
      Utilities.setInputPaths(job, inputPaths);

      Utilities.setMapRedWork(job, work, ctx.getMRTmpFileURI());

      if (mWork.getSamplingType() > 0 && rWork != null && rWork.getNumReduceTasks() > 1) {
        try {
          handleSampling(driverContext, mWork, job, conf);
          job.setPartitionerClass(HiveTotalOrderPartitioner.class);
        } catch (Exception e) {
          console.printInfo("Not enough sampling data.. Rolling back to single reducer task");
          rWork.setNumReduceTasks(1);
          job.setNumReduceTasks(1);
        }
      }

      // remove the pwd from conf file so that job tracker doesn't show this
      // logs
      String pwd = HiveConf.getVar(job, HiveConf.ConfVars.METASTOREPWD);
      if (pwd != null) {
        HiveConf.setVar(job, HiveConf.ConfVars.METASTOREPWD, "HIVE");
      }
      JobClient jc = new JobClient(job);
      // make this client wait if job trcker is not behaving well.
      Throttle.checkJobTracker(job, LOG);

      if (mWork.isGatheringStats() || (rWork != null && rWork.isGatheringStats())) {
        // initialize stats publishing table
        StatsPublisher statsPublisher;
        String statsImplementationClass = HiveConf.getVar(job, HiveConf.ConfVars.HIVESTATSDBCLASS);
        if (StatsFactory.setImplementation(statsImplementationClass, job)) {
          statsPublisher = StatsFactory.getStatsPublisher();
          if (!statsPublisher.init(job)) { // creating stats table if not exists
            if (HiveConf.getBoolVar(job, HiveConf.ConfVars.HIVE_STATS_RELIABLE)) {
              throw
                new HiveException(ErrorMsg.STATSPUBLISHER_INITIALIZATION_ERROR.getErrorCodedMsg());
            }
          }
        }
      }

      Utilities.createTmpDirs(job, mWork);
      Utilities.createTmpDirs(job, rWork);

      // Finally SUBMIT the JOB!
      rj = jc.submitJob(job);
      // replace it back
      if (pwd != null) {
        HiveConf.setVar(job, HiveConf.ConfVars.METASTOREPWD, pwd);
      }

      returnVal = jobExecHelper.progress(rj, jc);
      success = (returnVal == 0);
    } catch (Exception e) {
      e.printStackTrace();
      String mesg = " with exception '" + Utilities.getNameMessage(e) + "'";
      if (rj != null) {
        mesg = "Ended Job = " + rj.getJobID() + mesg;
      } else {
        mesg = "Job Submission failed" + mesg;
      }

      // Has to use full name to make sure it does not conflict with
      // com.facebook.presto.hive.shaded.org.apache.commons.lang.StringUtils
      console.printError(mesg, "\n" + org.apache.hadoop.util.StringUtils.stringifyException(e));

      success = false;
      returnVal = 1;
    } finally {
      Utilities.clearWork(job);
      try {
        if (ctxCreated) {
          ctx.clear();
        }

        if (rj != null) {
          if (returnVal != 0) {
            rj.killJob();
          }
          HadoopJobExecHelper.runningJobKillURIs.remove(rj.getJobID());
          jobID = rj.getID().toString();
        }
      } catch (Exception e) {
      }
    }

    // get the list of Dynamic partition paths
    try {
      if (rj != null) {
        JobCloseFeedBack feedBack = new JobCloseFeedBack();
        if (mWork.getAliasToWork() != null) {
          for (Operator<? extends OperatorDesc> op : mWork.getAliasToWork().values()) {
            op.jobClose(job, success, feedBack);
          }
        }
        if (rWork != null) {
          rWork.getReducer().jobClose(job, success, feedBack);
View Full Code Here

    }
    try {
      jc = job;
      execContext.setJc(jc);
      // create map and fetch operators
      MapWork mrwork = Utilities.getMapWork(job);
      mo = new MapOperator();
      mo.setConf(mrwork);
      // initialize map operator
      mo.setChildren(job);
      l4j.info(mo.dump(0));
      // initialize map local work
      localWork = mrwork.getMapLocalWork();
      execContext.setLocalWork(localWork);

      MapredContext.init(true, new JobConf(jc));

      mo.setExecContext(execContext);
View Full Code Here

  /**
   * Set hive input format, and input format file if necessary.
   */
  protected void setInputAttributes(Configuration conf) {
    MapWork mWork = work.getMapWork();
    if (mWork.getInputformat() != null) {
      HiveConf.setVar(conf, HiveConf.ConfVars.HIVEINPUTFORMAT, mWork.getInputformat());
    }
    if (mWork.getIndexIntermediateFile() != null) {
      conf.set("hive.index.compact.file", mWork.getIndexIntermediateFile());
      conf.set("hive.index.blockfilter.file", mWork.getIndexIntermediateFile());
    }

    // Intentionally overwrites anything the user may have put here
    conf.setBoolean("hive.input.format.sorted", mWork.isInputFormatSorted());
  }
View Full Code Here

            // If it's a standard map reduce task, check what, if anything, it inferred about
            // the directory this move task is moving
            if (task instanceof MapRedTask) {
              MapredWork work = (MapredWork)task.getWork();
              MapWork mapWork = work.getMapWork();
              bucketCols = mapWork.getBucketedColsByDirectory().get(path);
              sortCols = mapWork.getSortedColsByDirectory().get(path);
              if (work.getReduceWork() != null) {
                numBuckets = work.getReduceWork().getNumReduceTasks();
              }

              if (bucketCols != null || sortCols != null) {
View Full Code Here

    joinDescriptor.setSkewKeysValuesTables(tableDescList);
    joinDescriptor.setKeyTableDesc(keyTblDesc);

    for (int i = 0; i < numAliases - 1; i++) {
      Byte src = tags[i];
      MapWork newPlan = PlanUtils.getMapRedWork().getMapWork();

      // This code has been only added for testing
      boolean mapperCannotSpanPartns =
        parseCtx.getConf().getBoolVar(
          HiveConf.ConfVars.HIVE_MAPPER_CANNOT_SPAN_MULTIPLE_PARTITIONS);
      newPlan.setMapperCannotSpanPartns(mapperCannotSpanPartns);

      MapredWork clonePlan = Utilities.clonePlan(currPlan);

      Operator<? extends OperatorDesc>[] parentOps = new TableScanOperator[tags.length];
      for (int k = 0; k < tags.length; k++) {
        Operator<? extends OperatorDesc> ts = OperatorFactory.get(
            TableScanDesc.class, (RowSchema) null);
        ((TableScanOperator)ts).setTableDesc(tableDescList.get((byte)k));
        parentOps[k] = ts;
      }
      Operator<? extends OperatorDesc> tblScan_op = parentOps[i];

      ArrayList<String> aliases = new ArrayList<String>();
      String alias = src.toString();
      aliases.add(alias);
      String bigKeyDirPath = bigKeysDirMap.get(src);
      newPlan.getPathToAliases().put(bigKeyDirPath, aliases);




      newPlan.getAliasToWork().put(alias, tblScan_op);
      PartitionDesc part = new PartitionDesc(tableDescList.get(src), null);


      newPlan.getPathToPartitionInfo().put(bigKeyDirPath, part);
      newPlan.getAliasToPartnInfo().put(alias, part);

      Operator<? extends OperatorDesc> reducer = clonePlan.getReduceWork().getReducer();
      assert reducer instanceof JoinOperator;
      JoinOperator cloneJoinOp = (JoinOperator) reducer;

      String dumpFilePrefix = "mapfile"+PlanUtils.getCountForMapJoinDumpFilePrefix();
      MapJoinDesc mapJoinDescriptor = new MapJoinDesc(newJoinKeys, keyTblDesc,
          newJoinValues, newJoinValueTblDesc, newJoinValueTblDesc,joinDescriptor
          .getOutputColumnNames(), i, joinDescriptor.getConds(),
          joinDescriptor.getFilters(), joinDescriptor.getNoOuterJoin(), dumpFilePrefix);
      mapJoinDescriptor.setTagOrder(tags);
      mapJoinDescriptor.setHandleSkewJoin(false);
      mapJoinDescriptor.setNullSafes(joinDescriptor.getNullSafes());

      MapredLocalWork localPlan = new MapredLocalWork(
          new LinkedHashMap<String, Operator<? extends OperatorDesc>>(),
          new LinkedHashMap<String, FetchWork>());
      Map<Byte, String> smallTblDirs = smallKeysDirMap.get(src);

      for (int j = 0; j < numAliases; j++) {
        if (j == i) {
          continue;
        }
        Byte small_alias = tags[j];
        Operator<? extends OperatorDesc> tblScan_op2 = parentOps[j];
        localPlan.getAliasToWork().put(small_alias.toString(), tblScan_op2);
        Path tblDir = new Path(smallTblDirs.get(small_alias));
        localPlan.getAliasToFetchWork().put(small_alias.toString(),
            new FetchWork(tblDir.toString(), tableDescList.get(small_alias)));
      }

      newPlan.setMapLocalWork(localPlan);

      // construct a map join and set it as the child operator of tblScan_op
      MapJoinOperator mapJoinOp = (MapJoinOperator) OperatorFactory
          .getAndMakeChild(mapJoinDescriptor, (RowSchema) null, parentOps);
      // change the children of the original join operator to point to the map
      // join operator
      List<Operator<? extends OperatorDesc>> childOps = cloneJoinOp
          .getChildOperators();
      for (Operator<? extends OperatorDesc> childOp : childOps) {
        childOp.replaceParent(cloneJoinOp, mapJoinOp);
      }
      mapJoinOp.setChildOperators(childOps);

      HiveConf jc = new HiveConf(parseCtx.getConf(),
          GenMRSkewJoinProcessor.class);

      newPlan.setNumMapTasks(HiveConf
          .getIntVar(jc, HiveConf.ConfVars.HIVESKEWJOINMAPJOINNUMMAPTASK));
      newPlan
          .setMinSplitSize(HiveConf.getLongVar(jc, HiveConf.ConfVars.HIVESKEWJOINMAPJOINMINSPLIT));
      newPlan.setInputformat(HiveInputFormat.class.getName());

      MapredWork w = new MapredWork();
      w.setMapWork(newPlan);

      Task<? extends Serializable> skewJoinMapJoinTask = TaskFactory.get(w, jc);
View Full Code Here

    Driver driver = new Driver(queryConf);
    driver.compile(qlCommand.toString(), false);

    if (pctx.getConf().getBoolVar(ConfVars.HIVE_INDEX_COMPACT_BINARY_SEARCH) && useSorted) {
      // For now, only works if the predicate is a single condition
      MapWork work = null;
      String originalInputFormat = null;
      for (Task task : driver.getPlan().getRootTasks()) {
        // The index query should have one and only one map reduce task in the root tasks
        // Otherwise something is wrong, log the problem and continue using the default format
        if (task.getWork() instanceof MapredWork) {
          if (work != null) {
            LOG.error("Tried to use a binary search on a compact index but there were an " +
                      "unexpected number (>1) of root level map reduce tasks in the " +
                      "reentrant query plan.");
            work.setInputformat(null);
            work.setInputFormatSorted(false);
            break;
          }
          if (task.getWork() != null) {
            work = ((MapredWork)task.getWork()).getMapWork();
          }
          String inputFormat = work.getInputformat();
          originalInputFormat = inputFormat;
          if (inputFormat == null) {
            inputFormat = HiveConf.getVar(pctx.getConf(), HiveConf.ConfVars.HIVEINPUTFORMAT);
          }

          // We can only perform a binary search with HiveInputFormat and CombineHiveInputFormat
          // and BucketizedHiveInputFormat
          try {
            if (!HiveInputFormat.class.isAssignableFrom(Class.forName(inputFormat))) {
              work = null;
              break;
            }
          } catch (ClassNotFoundException e) {
            LOG.error("Map reduce work's input format class: " + inputFormat + " was not found. " +
                       "Cannot use the fact the compact index is sorted.");
            work = null;
            break;
          }

          work.setInputFormatSorted(true);
        }
      }

      if (work != null) {
        // Find the filter operator and expr node which act on the index column and mark them
        if (!findIndexColumnFilter(work.getAliasToWork().values())) {
          LOG.error("Could not locate the index column's filter operator and expr node. Cannot " +
                    "use the fact the compact index is sorted.");
          work.setInputformat(originalInputFormat);
          work.setInputFormatSorted(false);
        }
      }
    }

View Full Code Here

        MapredWork plan = (MapredWork) currTask.getWork();
        for (int pos = 0; pos < size; pos++) {
          String taskTmpDir = taskTmpDirLst.get(pos);
          TableDesc tt_desc = tt_descLst.get(pos);
          MapWork mWork = plan.getMapWork();
          if (mWork.getPathToAliases().get(taskTmpDir) == null) {
            mWork.getPathToAliases().put(taskTmpDir,
                new ArrayList<String>());
            mWork.getPathToAliases().get(taskTmpDir).add(taskTmpDir);
            mWork.getPathToPartitionInfo().put(taskTmpDir,
                new PartitionDesc(tt_desc, null));
            mWork.getAliasToWork().put(taskTmpDir, topOperators.get(pos));
          }
        }
      }
    }
  }
View Full Code Here

   *          pruned partition list. If it is null it will be computed on-the-fly.
   */
  public static void setTaskPlan(String alias_id,
      Operator<? extends OperatorDesc> topOp, Task<?> task, boolean local,
      GenMRProcContext opProcCtx, PrunedPartitionList pList) throws SemanticException {
    MapWork plan = ((MapredWork) task.getWork()).getMapWork();
    ParseContext parseCtx = opProcCtx.getParseCtx();
    Set<ReadEntity> inputs = opProcCtx.getInputs();

    ArrayList<Path> partDir = new ArrayList<Path>();
    ArrayList<PartitionDesc> partDesc = new ArrayList<PartitionDesc>();

    Path tblDir = null;
    TableDesc tblDesc = null;

    PrunedPartitionList partsList = pList;

    plan.setNameToSplitSample(parseCtx.getNameToSplitSample());

    if (partsList == null) {
      try {
        TableScanOperator tsOp = (TableScanOperator) topOp;
        partsList = PartitionPruner.prune(tsOp, parseCtx, alias_id);
      } catch (SemanticException e) {
        throw e;
      } catch (HiveException e) {
        LOG.error(org.apache.hadoop.util.StringUtils.stringifyException(e));
        throw new SemanticException(e.getMessage(), e);
      }
    }

    // Generate the map work for this alias_id
    // pass both confirmed and unknown partitions through the map-reduce
    // framework
    Set<Partition> parts = partsList.getPartitions();
    PartitionDesc aliasPartnDesc = null;
    try {
      if (!parts.isEmpty()) {
        aliasPartnDesc = Utilities.getPartitionDesc(parts.iterator().next());
      }
    } catch (HiveException e) {
      LOG.error(org.apache.hadoop.util.StringUtils.stringifyException(e));
      throw new SemanticException(e.getMessage(), e);
    }

    // The table does not have any partitions
    if (aliasPartnDesc == null) {
      aliasPartnDesc = new PartitionDesc(Utilities.getTableDesc(parseCtx
          .getTopToTable().get(topOp)), null);

    }

    Map<String, String> props = parseCtx.getTopToProps().get(topOp);
    if (props != null) {
      Properties target = aliasPartnDesc.getProperties();
      if (target == null) {
        aliasPartnDesc.setProperties(target = new Properties());
      }
      target.putAll(props);
    }

    plan.getAliasToPartnInfo().put(alias_id, aliasPartnDesc);

    long sizeNeeded = Integer.MAX_VALUE;
    int fileLimit = -1;
    if (parseCtx.getGlobalLimitCtx().isEnable()) {
      long sizePerRow = HiveConf.getLongVar(parseCtx.getConf(),
          HiveConf.ConfVars.HIVELIMITMAXROWSIZE);
      sizeNeeded = parseCtx.getGlobalLimitCtx().getGlobalLimit() * sizePerRow;
      // for the optimization that reduce number of input file, we limit number
      // of files allowed. If more than specific number of files have to be
      // selected, we skip this optimization. Since having too many files as
      // inputs can cause unpredictable latency. It's not necessarily to be
      // cheaper.
      fileLimit =
          HiveConf.getIntVar(parseCtx.getConf(), HiveConf.ConfVars.HIVELIMITOPTLIMITFILE);

      if (sizePerRow <= 0 || fileLimit <= 0) {
        LOG.info("Skip optimization to reduce input size of 'limit'");
        parseCtx.getGlobalLimitCtx().disableOpt();
      } else if (parts.isEmpty()) {
        LOG.info("Empty input: skip limit optimiztion");
      } else {
        LOG.info("Try to reduce input size for 'limit' " +
            "sizeNeeded: " + sizeNeeded +
            "  file limit : " + fileLimit);
      }
    }
    boolean isFirstPart = true;
    boolean emptyInput = true;
    boolean singlePartition = (parts.size() == 1);

    // Track the dependencies for the view. Consider a query like: select * from V;
    // where V is a view of the form: select * from T
    // The dependencies should include V at depth 0, and T at depth 1 (inferred).
    ReadEntity parentViewInfo = getParentViewInfo(alias_id, parseCtx.getViewAliasToInput());

    // The table should also be considered a part of inputs, even if the table is a
    // partitioned table and whether any partition is selected or not
    PlanUtils.addInput(inputs,
        new ReadEntity(parseCtx.getTopToTable().get(topOp), parentViewInfo));

    for (Partition part : parts) {
      if (part.getTable().isPartitioned()) {
        PlanUtils.addInput(inputs, new ReadEntity(part, parentViewInfo));
      } else {
        PlanUtils.addInput(inputs, new ReadEntity(part.getTable(), parentViewInfo));
      }

      // Later the properties have to come from the partition as opposed
      // to from the table in order to support versioning.
      Path[] paths = null;
      sampleDesc sampleDescr = parseCtx.getOpToSamplePruner().get(topOp);

      // Lookup list bucketing pruner
      Map<String, ExprNodeDesc> partToPruner = parseCtx.getOpToPartToSkewedPruner().get(topOp);
      ExprNodeDesc listBucketingPruner = (partToPruner != null) ? partToPruner.get(part.getName())
          : null;

      if (sampleDescr != null) {
        assert (listBucketingPruner == null) : "Sampling and list bucketing can't coexit.";
        paths = SamplePruner.prune(part, sampleDescr);
        parseCtx.getGlobalLimitCtx().disableOpt();
      } else if (listBucketingPruner != null) {
        assert (sampleDescr == null) : "Sampling and list bucketing can't coexist.";
        /* Use list bucketing prunner's path. */
        paths = ListBucketingPruner.prune(parseCtx, part, listBucketingPruner);
      } else {
        // Now we only try the first partition, if the first partition doesn't
        // contain enough size, we change to normal mode.
        if (parseCtx.getGlobalLimitCtx().isEnable()) {
          if (isFirstPart) {
            long sizeLeft = sizeNeeded;
            ArrayList<Path> retPathList = new ArrayList<Path>();
            SamplePruner.LimitPruneRetStatus status = SamplePruner.limitPrune(part, sizeLeft,
                fileLimit, retPathList);
            if (status.equals(SamplePruner.LimitPruneRetStatus.NoFile)) {
              continue;
            } else if (status.equals(SamplePruner.LimitPruneRetStatus.NotQualify)) {
              LOG.info("Use full input -- first " + fileLimit + " files are more than "
                  + sizeNeeded
                  + " bytes");

              parseCtx.getGlobalLimitCtx().disableOpt();

            } else {
              emptyInput = false;
              paths = new Path[retPathList.size()];
              int index = 0;
              for (Path path : retPathList) {
                paths[index++] = path;
              }
              if (status.equals(SamplePruner.LimitPruneRetStatus.NeedAllFiles) && singlePartition) {
                // if all files are needed to meet the size limit, we disable
                // optimization. It usually happens for empty table/partition or
                // table/partition with only one file. By disabling this
                // optimization, we can avoid retrying the query if there is
                // not sufficient rows.
                parseCtx.getGlobalLimitCtx().disableOpt();
              }
            }
            isFirstPart = false;
          } else {
            paths = new Path[0];
          }
        }
        if (!parseCtx.getGlobalLimitCtx().isEnable()) {
          paths = part.getPath();
        }
      }

      // is it a partitioned table ?
      if (!part.getTable().isPartitioned()) {
        assert ((tblDir == null) && (tblDesc == null));

        tblDir = paths[0];
        tblDesc = Utilities.getTableDesc(part.getTable());
      } else if (tblDesc == null) {
        tblDesc = Utilities.getTableDesc(part.getTable());
      }

      if (props != null) {
        Properties target = tblDesc.getProperties();
        if (target == null) {
          tblDesc.setProperties(target = new Properties());
        }
        target.putAll(props);
      }

      for (Path p : paths) {
        if (p == null) {
          continue;
        }
        String path = p.toString();
        if (LOG.isDebugEnabled()) {
          LOG.debug("Adding " + path + " of table" + alias_id);
        }

        partDir.add(p);
        try {
          if (part.getTable().isPartitioned()) {
            partDesc.add(Utilities.getPartitionDesc(part));
          }
          else {
            partDesc.add(Utilities.getPartitionDescFromTableDesc(tblDesc, part));
          }
        } catch (HiveException e) {
          LOG.error(org.apache.hadoop.util.StringUtils.stringifyException(e));
          throw new SemanticException(e.getMessage(), e);
        }
      }
    }
    if (emptyInput) {
      parseCtx.getGlobalLimitCtx().disableOpt();
    }

    Iterator<Path> iterPath = partDir.iterator();
    Iterator<PartitionDesc> iterPartnDesc = partDesc.iterator();

    if (!local) {
      while (iterPath.hasNext()) {
        assert iterPartnDesc.hasNext();
        String path = iterPath.next().toString();

        PartitionDesc prtDesc = iterPartnDesc.next();

        // Add the path to alias mapping
        if (plan.getPathToAliases().get(path) == null) {
          plan.getPathToAliases().put(path, new ArrayList<String>());
        }
        plan.getPathToAliases().get(path).add(alias_id);
        plan.getPathToPartitionInfo().put(path, prtDesc);
        if (LOG.isDebugEnabled()) {
          LOG.debug("Information added for path " + path);
        }
      }

      assert plan.getAliasToWork().get(alias_id) == null;
      plan.getAliasToWork().put(alias_id, topOp);
    } else {
      // populate local work if needed
      MapredLocalWork localPlan = plan.getMapLocalWork();
      if (localPlan == null) {
        localPlan = new MapredLocalWork(
            new LinkedHashMap<String, Operator<? extends OperatorDesc>>(),
            new LinkedHashMap<String, FetchWork>());
      }

      assert localPlan.getAliasToWork().get(alias_id) == null;
      assert localPlan.getAliasToFetchWork().get(alias_id) == null;
      localPlan.getAliasToWork().put(alias_id, topOp);
      if (tblDir == null) {
        tblDesc = Utilities.getTableDesc(partsList.getSourceTable());
        localPlan.getAliasToFetchWork().put(
            alias_id,
            new FetchWork(FetchWork.convertPathToStringArray(partDir), partDesc, tblDesc));
      } else {
        localPlan.getAliasToFetchWork().put(alias_id,
            new FetchWork(tblDir.toString(), tblDesc));
      }
      plan.setMapLocalWork(localPlan);
    }
    opProcCtx.addSeenOp(task, topOp);
  }
View Full Code Here

TOP

Related Classes of org.apache.hadoop.hive.ql.plan.MapWork

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.