Package org.apache.hadoop.hive.ql.plan

Examples of org.apache.hadoop.hive.ql.plan.MapWork


    Context ctx = driverContext.getCtx();
    boolean ctxCreated = false;
    String emptyScratchDirStr;
    Path emptyScratchDir;

    MapWork mWork = work.getMapWork();
    ReduceWork rWork = work.getReduceWork();

    try {
      if (ctx == null) {
        ctx = new Context(job);
        ctxCreated = true;
      }

      emptyScratchDirStr = ctx.getMRTmpFileURI();
      emptyScratchDir = new Path(emptyScratchDirStr);
      FileSystem fs = emptyScratchDir.getFileSystem(job);
      fs.mkdirs(emptyScratchDir);
    } catch (IOException e) {
      e.printStackTrace();
      console.printError("Error launching map-reduce job", "\n"
          + org.apache.hadoop.util.StringUtils.stringifyException(e));
      return 5;
    }

    ShimLoader.getHadoopShims().prepareJobOutput(job);
    //See the javadoc on HiveOutputFormatImpl and HadoopShims.prepareJobOutput()
    job.setOutputFormat(HiveOutputFormatImpl.class);
    job.setMapperClass(ExecMapper.class);

    job.setMapOutputKeyClass(HiveKey.class);
    job.setMapOutputValueClass(BytesWritable.class);

    try {
      job.setPartitionerClass((Class<? extends Partitioner>) (Class.forName(HiveConf.getVar(job,
          HiveConf.ConfVars.HIVEPARTITIONER))));
    } catch (ClassNotFoundException e) {
      throw new RuntimeException(e.getMessage());
    }

    if (mWork.getNumMapTasks() != null) {
      job.setNumMapTasks(mWork.getNumMapTasks().intValue());
    }

    if (mWork.getMaxSplitSize() != null) {
      HiveConf.setLongVar(job, HiveConf.ConfVars.MAPREDMAXSPLITSIZE, mWork.getMaxSplitSize().longValue());
    }

    if (mWork.getMinSplitSize() != null) {
      HiveConf.setLongVar(job, HiveConf.ConfVars.MAPREDMINSPLITSIZE, mWork.getMinSplitSize().longValue());
    }

    if (mWork.getMinSplitSizePerNode() != null) {
      HiveConf.setLongVar(job, HiveConf.ConfVars.MAPREDMINSPLITSIZEPERNODE, mWork.getMinSplitSizePerNode().longValue());
    }

    if (mWork.getMinSplitSizePerRack() != null) {
      HiveConf.setLongVar(job, HiveConf.ConfVars.MAPREDMINSPLITSIZEPERRACK, mWork.getMinSplitSizePerRack().longValue());
    }

    job.setNumReduceTasks(rWork != null ? rWork.getNumReduceTasks().intValue() : 0);
    job.setReducerClass(ExecReducer.class);

    // set input format information if necessary
    setInputAttributes(job);

    // Turn on speculative execution for reducers
    boolean useSpeculativeExecReducers = HiveConf.getBoolVar(job,
        HiveConf.ConfVars.HIVESPECULATIVEEXECREDUCERS);
    HiveConf.setBoolVar(job, HiveConf.ConfVars.HADOOPSPECULATIVEEXECREDUCERS,
        useSpeculativeExecReducers);

    String inpFormat = HiveConf.getVar(job, HiveConf.ConfVars.HIVEINPUTFORMAT);
    if ((inpFormat == null) || (!StringUtils.isNotBlank(inpFormat))) {
      inpFormat = ShimLoader.getHadoopShims().getInputFormatClassName();
    }

    if (mWork.isUseBucketizedHiveInputFormat()) {
      inpFormat = BucketizedHiveInputFormat.class.getName();
    }

    LOG.info("Using " + inpFormat);

    try {
      job.setInputFormat((Class<? extends InputFormat>) (Class.forName(inpFormat)));
    } catch (ClassNotFoundException e) {
      throw new RuntimeException(e.getMessage());
    }


    // No-Op - we don't really write anything here ..
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(Text.class);

    // Transfer HIVEAUXJARS and HIVEADDEDJARS to "tmpjars" so hadoop understands
    // it
    String auxJars = HiveConf.getVar(job, HiveConf.ConfVars.HIVEAUXJARS);
    String addedJars = HiveConf.getVar(job, HiveConf.ConfVars.HIVEADDEDJARS);
    if (StringUtils.isNotBlank(auxJars) || StringUtils.isNotBlank(addedJars)) {
      String allJars = StringUtils.isNotBlank(auxJars) ? (StringUtils.isNotBlank(addedJars) ? addedJars
          + "," + auxJars
          : auxJars)
          : addedJars;
      LOG.info("adding libjars: " + allJars);
      initializeFiles("tmpjars", allJars);
    }

    // Transfer HIVEADDEDFILES to "tmpfiles" so hadoop understands it
    String addedFiles = HiveConf.getVar(job, HiveConf.ConfVars.HIVEADDEDFILES);
    if (StringUtils.isNotBlank(addedFiles)) {
      initializeFiles("tmpfiles", addedFiles);
    }
    int returnVal = 0;
    boolean noName = StringUtils.isEmpty(HiveConf.getVar(job, HiveConf.ConfVars.HADOOPJOBNAME));

    if (noName) {
      // This is for a special case to ensure unit tests pass
      HiveConf.setVar(job, HiveConf.ConfVars.HADOOPJOBNAME, "JOB" + Utilities.randGen.nextInt());
    }
    String addedArchives = HiveConf.getVar(job, HiveConf.ConfVars.HIVEADDEDARCHIVES);
    // Transfer HIVEADDEDARCHIVES to "tmparchives" so hadoop understands it
    if (StringUtils.isNotBlank(addedArchives)) {
      initializeFiles("tmparchives", addedArchives);
    }

    try{
      MapredLocalWork localwork = mWork.getMapLocalWork();
      if (localwork != null) {
        if (!ShimLoader.getHadoopShims().isLocalMode(job)) {
          Path localPath = new Path(localwork.getTmpFileURI());
          Path hdfsPath = new Path(mWork.getTmpHDFSFileURI());

          FileSystem hdfs = hdfsPath.getFileSystem(job);
          FileSystem localFS = localPath.getFileSystem(job);
          FileStatus[] hashtableFiles = localFS.listStatus(localPath);
          int fileNumber = hashtableFiles.length;
          String[] fileNames = new String[fileNumber];

          for ( int i = 0; i < fileNumber; i++){
            fileNames[i] = hashtableFiles[i].getPath().getName();
          }

          //package and compress all the hashtable files to an archive file
          String parentDir = localPath.toUri().getPath();
          String stageId = this.getId();
          String archiveFileURI = Utilities.generateTarURI(parentDir, stageId);
          String archiveFileName = Utilities.generateTarFileName(stageId);
          localwork.setStageID(stageId);

          CompressionUtils.tar(parentDir, fileNames,archiveFileName);
          Path archivePath = new Path(archiveFileURI);
          LOG.info("Archive "+ hashtableFiles.length+" hash table files to " + archiveFileURI);

          //upload archive file to hdfs
          String hdfsFile =Utilities.generateTarURI(hdfsPath, stageId);
          Path hdfsFilePath = new Path(hdfsFile);
          short replication = (short) job.getInt("mapred.submit.replication", 10);
          hdfs.setReplication(hdfsFilePath, replication);
          hdfs.copyFromLocalFile(archivePath, hdfsFilePath);
          LOG.info("Upload 1 archive file  from" + archivePath + " to: " + hdfsFilePath);

          //add the archive file to distributed cache
          DistributedCache.createSymlink(job);
          DistributedCache.addCacheArchive(hdfsFilePath.toUri(), job);
          LOG.info("Add 1 archive file to distributed cache. Archive file: " + hdfsFilePath.toUri());
        }
      }
      work.configureJobConf(job);
      List<Path> inputPaths = Utilities.getInputPaths(job, mWork, emptyScratchDirStr, ctx);
      Utilities.setInputPaths(job, inputPaths);

      Utilities.setMapRedWork(job, work, ctx.getMRTmpFileURI());

      if (mWork.getSamplingType() > 0 && rWork != null && rWork.getNumReduceTasks() > 1) {
        try {
          handleSampling(driverContext, mWork, job, conf);
          job.setPartitionerClass(HiveTotalOrderPartitioner.class);
        } catch (Exception e) {
          console.printInfo("Not enough sampling data.. Rolling back to single reducer task");
          rWork.setNumReduceTasks(1);
          job.setNumReduceTasks(1);
        }
      }

      // remove the pwd from conf file so that job tracker doesn't show this
      // logs
      String pwd = HiveConf.getVar(job, HiveConf.ConfVars.METASTOREPWD);
      if (pwd != null) {
        HiveConf.setVar(job, HiveConf.ConfVars.METASTOREPWD, "HIVE");
      }
      JobClient jc = new JobClient(job);
      // make this client wait if job trcker is not behaving well.
      Throttle.checkJobTracker(job, LOG);

      if (mWork.isGatheringStats() || (rWork != null && rWork.isGatheringStats())) {
        // initialize stats publishing table
        StatsPublisher statsPublisher;
        String statsImplementationClass = HiveConf.getVar(job, HiveConf.ConfVars.HIVESTATSDBCLASS);
        if (StatsFactory.setImplementation(statsImplementationClass, job)) {
          statsPublisher = StatsFactory.getStatsPublisher();
          if (!statsPublisher.init(job)) { // creating stats table if not exists
            if (HiveConf.getBoolVar(job, HiveConf.ConfVars.HIVE_STATS_RELIABLE)) {
              throw
                new HiveException(ErrorMsg.STATSPUBLISHER_INITIALIZATION_ERROR.getErrorCodedMsg());
            }
          }
        }
      }

      Utilities.createTmpDirs(job, mWork);
      Utilities.createTmpDirs(job, rWork);

      // Finally SUBMIT the JOB!
      rj = jc.submitJob(job);
      // replace it back
      if (pwd != null) {
        HiveConf.setVar(job, HiveConf.ConfVars.METASTOREPWD, pwd);
      }

      returnVal = jobExecHelper.progress(rj, jc);
      success = (returnVal == 0);
    } catch (Exception e) {
      e.printStackTrace();
      String mesg = " with exception '" + Utilities.getNameMessage(e) + "'";
      if (rj != null) {
        mesg = "Ended Job = " + rj.getJobID() + mesg;
      } else {
        mesg = "Job Submission failed" + mesg;
      }

      // Has to use full name to make sure it does not conflict with
      // org.apache.commons.lang.StringUtils
      console.printError(mesg, "\n" + org.apache.hadoop.util.StringUtils.stringifyException(e));

      success = false;
      returnVal = 1;
    } finally {
      Utilities.clearWork(job);
      try {
        if (ctxCreated) {
          ctx.clear();
        }

        if (rj != null) {
          if (returnVal != 0) {
            rj.killJob();
          }
          HadoopJobExecHelper.runningJobKillURIs.remove(rj.getJobID());
          jobID = rj.getID().toString();
        }
      } catch (Exception e) {
      }
    }

    // get the list of Dynamic partition paths
    try {
      if (rj != null) {
        JobCloseFeedBack feedBack = new JobCloseFeedBack();
        if (mWork.getAliasToWork() != null) {
          for (Operator<? extends OperatorDesc> op : mWork.getAliasToWork().values()) {
            op.jobClose(job, success, feedBack);
          }
        }
        if (rWork != null) {
          rWork.getReducer().jobClose(job, success, feedBack);
View Full Code Here


  /**
   * Set hive input format, and input format file if necessary.
   */
  protected void setInputAttributes(Configuration conf) {
    MapWork mWork = work.getMapWork();
    if (mWork.getInputformat() != null) {
      HiveConf.setVar(conf, HiveConf.ConfVars.HIVEINPUTFORMAT, mWork.getInputformat());
    }
    if (mWork.getIndexIntermediateFile() != null) {
      conf.set("hive.index.compact.file", mWork.getIndexIntermediateFile());
      conf.set("hive.index.blockfilter.file", mWork.getIndexIntermediateFile());
    }

    // Intentionally overwrites anything the user may have put here
    conf.setBoolean("hive.input.format.sorted", mWork.isInputFormatSorted());
  }
View Full Code Here

    Driver driver = new Driver(queryConf);
    driver.compile(qlCommand.toString(), false);

    if (pctx.getConf().getBoolVar(ConfVars.HIVE_INDEX_COMPACT_BINARY_SEARCH) && useSorted) {
      // For now, only works if the predicate is a single condition
      MapWork work = null;
      String originalInputFormat = null;
      for (Task task : driver.getPlan().getRootTasks()) {
        // The index query should have one and only one map reduce task in the root tasks
        // Otherwise something is wrong, log the problem and continue using the default format
        if (task.getWork() instanceof MapredWork) {
          if (work != null) {
            LOG.error("Tried to use a binary search on a compact index but there were an " +
                      "unexpected number (>1) of root level map reduce tasks in the " +
                      "reentrant query plan.");
            work.setInputformat(null);
            work.setInputFormatSorted(false);
            break;
          }
          if (task.getWork() != null) {
            work = ((MapredWork)task.getWork()).getMapWork();
          }
          String inputFormat = work.getInputformat();
          originalInputFormat = inputFormat;
          if (inputFormat == null) {
            inputFormat = HiveConf.getVar(pctx.getConf(), HiveConf.ConfVars.HIVEINPUTFORMAT);
          }

          // We can only perform a binary search with HiveInputFormat and CombineHiveInputFormat
          // and BucketizedHiveInputFormat
          try {
            if (!HiveInputFormat.class.isAssignableFrom(Class.forName(inputFormat))) {
              work = null;
              break;
            }
          } catch (ClassNotFoundException e) {
            LOG.error("Map reduce work's input format class: " + inputFormat + " was not found. " +
                       "Cannot use the fact the compact index is sorted.");
            work = null;
            break;
          }

          work.setInputFormatSorted(true);
        }
      }

      if (work != null) {
        // Find the filter operator and expr node which act on the index column and mark them
        if (!findIndexColumnFilter(work.getAliasToWork().values())) {
          LOG.error("Could not locate the index column's filter operator and expr node. Cannot " +
                    "use the fact the compact index is sorted.");
          work.setInputformat(originalInputFormat);
          work.setInputFormatSorted(false);
        }
      }
    }

View Full Code Here

        tblProps);
    LinkedHashMap<String, String> partSpec =
        new LinkedHashMap<String, String>();
    PartitionDesc part = new PartitionDesc(tbl, partSpec);

    MapWork mapWork = new MapWork();
    mapWork.setVectorMode(isVectorized);
    mapWork.setUseBucketizedHiveInputFormat(false);
    LinkedHashMap<String, ArrayList<String>> aliasMap =
        new LinkedHashMap<String, ArrayList<String>>();
    ArrayList<String> aliases = new ArrayList<String>();
    aliases.add(tableName);
    aliasMap.put(root.toString(), aliases);
    mapWork.setPathToAliases(aliasMap);
    LinkedHashMap<String, PartitionDesc> partMap =
        new LinkedHashMap<String, PartitionDesc>();
    partMap.put(root.toString(), part);
    mapWork.setPathToPartitionInfo(partMap);
    mapWork.setScratchColumnMap(new HashMap<String, Map<String, Integer>>());
    mapWork.setScratchColumnVectorTypes(new HashMap<String,
        Map<Integer, String>>());

    // write the plan out
    FileSystem localFs = FileSystem.getLocal(conf).getRaw();
    Path mapXml = new Path(workDir, "map.xml");
View Full Code Here

    Driver driver = new Driver(queryConf);
    driver.compile(qlCommand.toString(), false);

    if (pctx.getConf().getBoolVar(ConfVars.HIVE_INDEX_COMPACT_BINARY_SEARCH) && useSorted) {
      // For now, only works if the predicate is a single condition
      MapWork work = null;
      String originalInputFormat = null;
      for (Task task : driver.getPlan().getRootTasks()) {
        // The index query should have one and only one map reduce task in the root tasks
        // Otherwise something is wrong, log the problem and continue using the default format
        if (task.getWork() instanceof MapredWork) {
          if (work != null) {
            LOG.error("Tried to use a binary search on a compact index but there were an " +
                      "unexpected number (>1) of root level map reduce tasks in the " +
                      "reentrant query plan.");
            work.setInputformat(null);
            work.setInputFormatSorted(false);
            break;
          }
          if (task.getWork() != null) {
            work = ((MapredWork)task.getWork()).getMapWork();
          }
          String inputFormat = work.getInputformat();
          originalInputFormat = inputFormat;
          if (inputFormat == null) {
            inputFormat = HiveConf.getVar(pctx.getConf(), HiveConf.ConfVars.HIVEINPUTFORMAT);
          }

          // We can only perform a binary search with HiveInputFormat and CombineHiveInputFormat
          // and BucketizedHiveInputFormat
          try {
            if (!HiveInputFormat.class.isAssignableFrom(Class.forName(inputFormat))) {
              work = null;
              break;
            }
          } catch (ClassNotFoundException e) {
            LOG.error("Map reduce work's input format class: " + inputFormat + " was not found. " +
                       "Cannot use the fact the compact index is sorted.");
            work = null;
            break;
          }

          work.setInputFormatSorted(true);
        }
      }

      if (work != null) {
        // Find the filter operator and expr node which act on the index column and mark them
        if (!findIndexColumnFilter(work.getAliasToWork().values())) {
          LOG.error("Could not locate the index column's filter operator and expr node. Cannot " +
                    "use the fact the compact index is sorted.");
          work.setInputformat(originalInputFormat);
          work.setInputFormatSorted(false);
        }
      }
    }

View Full Code Here

    Context ctx = driverContext.getCtx();
    boolean ctxCreated = false;
    Path emptyScratchDir;

    MapWork mWork = work.getMapWork();
    ReduceWork rWork = work.getReduceWork();

    try {
      if (ctx == null) {
        ctx = new Context(job);
        ctxCreated = true;
      }

      emptyScratchDir = ctx.getMRTmpPath();
      FileSystem fs = emptyScratchDir.getFileSystem(job);
      fs.mkdirs(emptyScratchDir);
    } catch (IOException e) {
      e.printStackTrace();
      console.printError("Error launching map-reduce job", "\n"
          + org.apache.hadoop.util.StringUtils.stringifyException(e));
      return 5;
    }

    ShimLoader.getHadoopShims().prepareJobOutput(job);
    //See the javadoc on HiveOutputFormatImpl and HadoopShims.prepareJobOutput()
    job.setOutputFormat(HiveOutputFormatImpl.class);

    job.setMapperClass(ExecMapper.class);

    job.setMapOutputKeyClass(HiveKey.class);
    job.setMapOutputValueClass(BytesWritable.class);

    try {
      job.setPartitionerClass((Class<? extends Partitioner>) (Class.forName(HiveConf.getVar(job,
          HiveConf.ConfVars.HIVEPARTITIONER))));
    } catch (ClassNotFoundException e) {
      throw new RuntimeException(e.getMessage());
    }

    if (mWork.getNumMapTasks() != null) {
      job.setNumMapTasks(mWork.getNumMapTasks().intValue());
    }

    if (mWork.getMaxSplitSize() != null) {
      HiveConf.setLongVar(job, HiveConf.ConfVars.MAPREDMAXSPLITSIZE, mWork.getMaxSplitSize().longValue());
    }

    if (mWork.getMinSplitSize() != null) {
      HiveConf.setLongVar(job, HiveConf.ConfVars.MAPREDMINSPLITSIZE, mWork.getMinSplitSize().longValue());
    }

    if (mWork.getMinSplitSizePerNode() != null) {
      HiveConf.setLongVar(job, HiveConf.ConfVars.MAPREDMINSPLITSIZEPERNODE, mWork.getMinSplitSizePerNode().longValue());
    }

    if (mWork.getMinSplitSizePerRack() != null) {
      HiveConf.setLongVar(job, HiveConf.ConfVars.MAPREDMINSPLITSIZEPERRACK, mWork.getMinSplitSizePerRack().longValue());
    }

    job.setNumReduceTasks(rWork != null ? rWork.getNumReduceTasks().intValue() : 0);
    job.setReducerClass(ExecReducer.class);

    // set input format information if necessary
    setInputAttributes(job);

    // Turn on speculative execution for reducers
    boolean useSpeculativeExecReducers = HiveConf.getBoolVar(job,
        HiveConf.ConfVars.HIVESPECULATIVEEXECREDUCERS);
    HiveConf.setBoolVar(job, HiveConf.ConfVars.HADOOPSPECULATIVEEXECREDUCERS,
        useSpeculativeExecReducers);

    String inpFormat = HiveConf.getVar(job, HiveConf.ConfVars.HIVEINPUTFORMAT);
    if ((inpFormat == null) || (!StringUtils.isNotBlank(inpFormat))) {
      inpFormat = ShimLoader.getHadoopShims().getInputFormatClassName();
    }

    if (mWork.isUseBucketizedHiveInputFormat()) {
      inpFormat = BucketizedHiveInputFormat.class.getName();
    }

    LOG.info("Using " + inpFormat);

    try {
      job.setInputFormat((Class<? extends InputFormat>) (Class.forName(inpFormat)));
    } catch (ClassNotFoundException e) {
      throw new RuntimeException(e.getMessage());
    }


    // No-Op - we don't really write anything here ..
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(Text.class);

    // Transfer HIVEAUXJARS and HIVEADDEDJARS to "tmpjars" so hadoop understands
    // it
    String auxJars = HiveConf.getVar(job, HiveConf.ConfVars.HIVEAUXJARS);
    String addedJars = HiveConf.getVar(job, HiveConf.ConfVars.HIVEADDEDJARS);
    if (StringUtils.isNotBlank(auxJars) || StringUtils.isNotBlank(addedJars)) {
      String allJars = StringUtils.isNotBlank(auxJars) ? (StringUtils.isNotBlank(addedJars) ? addedJars
          + "," + auxJars
          : auxJars)
          : addedJars;
      LOG.info("adding libjars: " + allJars);
      initializeFiles("tmpjars", allJars);
    }

    // Transfer HIVEADDEDFILES to "tmpfiles" so hadoop understands it
    String addedFiles = HiveConf.getVar(job, HiveConf.ConfVars.HIVEADDEDFILES);
    if (StringUtils.isNotBlank(addedFiles)) {
      initializeFiles("tmpfiles", addedFiles);
    }
    int returnVal = 0;
    boolean noName = StringUtils.isEmpty(HiveConf.getVar(job, HiveConf.ConfVars.HADOOPJOBNAME));

    if (noName) {
      // This is for a special case to ensure unit tests pass
      HiveConf.setVar(job, HiveConf.ConfVars.HADOOPJOBNAME, "JOB" + Utilities.randGen.nextInt());
    }
    String addedArchives = HiveConf.getVar(job, HiveConf.ConfVars.HIVEADDEDARCHIVES);
    // Transfer HIVEADDEDARCHIVES to "tmparchives" so hadoop understands it
    if (StringUtils.isNotBlank(addedArchives)) {
      initializeFiles("tmparchives", addedArchives);
    }

    try{
      MapredLocalWork localwork = mWork.getMapLocalWork();
      if (localwork != null && localwork.hasStagedAlias()) {
        if (!ShimLoader.getHadoopShims().isLocalMode(job)) {
          Path localPath = localwork.getTmpPath();
          Path hdfsPath = mWork.getTmpHDFSPath();

          FileSystem hdfs = hdfsPath.getFileSystem(job);
          FileSystem localFS = localPath.getFileSystem(job);
          FileStatus[] hashtableFiles = localFS.listStatus(localPath);
          int fileNumber = hashtableFiles.length;
          String[] fileNames = new String[fileNumber];

          for ( int i = 0; i < fileNumber; i++){
            fileNames[i] = hashtableFiles[i].getPath().getName();
          }

          //package and compress all the hashtable files to an archive file
          String stageId = this.getId();
          String archiveFileName = Utilities.generateTarFileName(stageId);
          localwork.setStageID(stageId);

          CompressionUtils.tar(localPath.toUri().getPath(), fileNames,archiveFileName);
          Path archivePath = Utilities.generateTarPath(localPath, stageId);
          LOG.info("Archive "+ hashtableFiles.length+" hash table files to " + archivePath);

          //upload archive file to hdfs
          Path hdfsFilePath =Utilities.generateTarPath(hdfsPath, stageId);
          short replication = (short) job.getInt("mapred.submit.replication", 10);
          hdfs.setReplication(hdfsFilePath, replication);
          hdfs.copyFromLocalFile(archivePath, hdfsFilePath);
          LOG.info("Upload 1 archive file  from" + archivePath + " to: " + hdfsFilePath);

          //add the archive file to distributed cache
          DistributedCache.createSymlink(job);
          DistributedCache.addCacheArchive(hdfsFilePath.toUri(), job);
          LOG.info("Add 1 archive file to distributed cache. Archive file: " + hdfsFilePath.toUri());
        }
      }
      work.configureJobConf(job);
      List<Path> inputPaths = Utilities.getInputPaths(job, mWork, emptyScratchDir, ctx);
      Utilities.setInputPaths(job, inputPaths);

      Utilities.setMapRedWork(job, work, ctx.getMRTmpPath());

      if (mWork.getSamplingType() > 0 && rWork != null && rWork.getNumReduceTasks() > 1) {
        try {
          handleSampling(driverContext, mWork, job, conf);
          job.setPartitionerClass(HiveTotalOrderPartitioner.class);
        } catch (IllegalStateException e) {
          console.printInfo("Not enough sampling data.. Rolling back to single reducer task");
          rWork.setNumReduceTasks(1);
          job.setNumReduceTasks(1);
        } catch (Exception e) {
          LOG.error("Sampling error", e);
          console.printError(e.toString(),
              "\n" + org.apache.hadoop.util.StringUtils.stringifyException(e));
          rWork.setNumReduceTasks(1);
          job.setNumReduceTasks(1);
        }
      }

      // remove the pwd from conf file so that job tracker doesn't show this
      // logs
      String pwd = HiveConf.getVar(job, HiveConf.ConfVars.METASTOREPWD);
      if (pwd != null) {
        HiveConf.setVar(job, HiveConf.ConfVars.METASTOREPWD, "HIVE");
      }
      JobClient jc = new JobClient(job);
      // make this client wait if job tracker is not behaving well.
      Throttle.checkJobTracker(job, LOG);

      if (mWork.isGatheringStats() || (rWork != null && rWork.isGatheringStats())) {
        // initialize stats publishing table
        StatsPublisher statsPublisher;
        StatsFactory factory = StatsFactory.newFactory(job);
        if (factory != null) {
          statsPublisher = factory.getStatsPublisher();
          if (!statsPublisher.init(job)) { // creating stats table if not exists
            if (HiveConf.getBoolVar(job, HiveConf.ConfVars.HIVE_STATS_RELIABLE)) {
              throw
                new HiveException(ErrorMsg.STATSPUBLISHER_INITIALIZATION_ERROR.getErrorCodedMsg());
            }
          }
        }
      }

      Utilities.createTmpDirs(job, mWork);
      Utilities.createTmpDirs(job, rWork);

      // Finally SUBMIT the JOB!
      rj = jc.submitJob(job);
      // replace it back
      if (pwd != null) {
        HiveConf.setVar(job, HiveConf.ConfVars.METASTOREPWD, pwd);
      }

      returnVal = jobExecHelper.progress(rj, jc, ctx.getHiveTxnManager());
      success = (returnVal == 0);
    } catch (Exception e) {
      e.printStackTrace();
      String mesg = " with exception '" + Utilities.getNameMessage(e) + "'";
      if (rj != null) {
        mesg = "Ended Job = " + rj.getJobID() + mesg;
      } else {
        mesg = "Job Submission failed" + mesg;
      }

      // Has to use full name to make sure it does not conflict with
      // org.apache.commons.lang.StringUtils
      console.printError(mesg, "\n" + org.apache.hadoop.util.StringUtils.stringifyException(e));

      success = false;
      returnVal = 1;
    } finally {
      Utilities.clearWork(job);
      try {
        if (ctxCreated) {
          ctx.clear();
        }

        if (rj != null) {
          if (returnVal != 0) {
            rj.killJob();
          }
          HadoopJobExecHelper.runningJobs.remove(rj);
          jobID = rj.getID().toString();
        }
      } catch (Exception e) {
      }
    }

    // get the list of Dynamic partition paths
    try {
      if (rj != null) {
        if (mWork.getAliasToWork() != null) {
          for (Operator<? extends OperatorDesc> op : mWork.getAliasToWork().values()) {
            op.jobClose(job, success);
          }
        }
        if (rWork != null) {
          rWork.getReducer().jobClose(job, success);
View Full Code Here

  /**
   * Set hive input format, and input format file if necessary.
   */
  protected void setInputAttributes(Configuration conf) {
    MapWork mWork = work.getMapWork();
    if (mWork.getInputformat() != null) {
      HiveConf.setVar(conf, ConfVars.HIVEINPUTFORMAT, mWork.getInputformat());
    }
    if (mWork.getIndexIntermediateFile() != null) {
      conf.set("hive.index.compact.file", mWork.getIndexIntermediateFile());
      conf.set("hive.index.blockfilter.file", mWork.getIndexIntermediateFile());
    }

    // Intentionally overwrites anything the user may have put here
    conf.setBoolean("hive.input.format.sorted", mWork.isInputFormatSorted());

    if (HiveConf.getVar(conf, ConfVars.HIVE_CURRENT_DATABASE, null) == null) {
      HiveConf.setVar(conf, ConfVars.HIVE_CURRENT_DATABASE, getCurrentDB());
    }
  }
View Full Code Here

    try {
      jc = job;
      execContext.setJc(jc);
      // create map and fetch operators
      MapWork mrwork = (MapWork) cache.retrieve(PLAN_KEY);
      if (mrwork == null) {
        mrwork = Utilities.getMapWork(job);
        cache.cache(PLAN_KEY, mrwork);
      } else {
        Utilities.setMapWork(job, mrwork);
      }
      if (mrwork.getVectorMode()) {
        mo = new VectorMapOperator();
      } else {
        mo = new MapOperator();
      }
      mo.setConf(mrwork);
      // initialize map operator
      mo.setChildren(job);
      l4j.info(mo.dump(0));
      // initialize map local work
      localWork = mrwork.getMapLocalWork();
      execContext.setLocalWork(localWork);

      MapredContext.init(true, new JobConf(jc));

      mo.setExecContext(execContext);
View Full Code Here

        tblProps);
    LinkedHashMap<String, String> partSpec =
        new LinkedHashMap<String, String>();
    PartitionDesc part = new PartitionDesc(tbl, partSpec);

    MapWork mapWork = new MapWork();
    mapWork.setVectorMode(isVectorized);
    mapWork.setUseBucketizedHiveInputFormat(false);
    LinkedHashMap<String, ArrayList<String>> aliasMap =
        new LinkedHashMap<String, ArrayList<String>>();
    ArrayList<String> aliases = new ArrayList<String>();
    aliases.add(tableName);
    aliasMap.put(root.toString(), aliases);
    mapWork.setPathToAliases(aliasMap);
    LinkedHashMap<String, PartitionDesc> partMap =
        new LinkedHashMap<String, PartitionDesc>();
    partMap.put(root.toString(), part);
    mapWork.setPathToPartitionInfo(partMap);
    mapWork.setScratchColumnMap(new HashMap<String, Map<String, Integer>>());
    mapWork.setScratchColumnVectorTypes(new HashMap<String,
        Map<Integer, String>>());

    // write the plan out
    FileSystem localFs = FileSystem.getLocal(conf).getRaw();
    Path mapXml = new Path(workDir, "map.xml");
View Full Code Here

    if (statsTasks.isEmpty() || !(runner.getTask() instanceof MapRedTask)) {
      return;
    }
    MapRedTask mapredTask = (MapRedTask) runner.getTask();

    MapWork mapWork = mapredTask.getWork().getMapWork();
    ReduceWork reduceWork = mapredTask.getWork().getReduceWork();
    List<Operator> operators = new ArrayList<Operator>(mapWork.getAliasToWork().values());
    if (reduceWork != null) {
      operators.add(reduceWork.getReducer());
    }
    final List<String> statKeys = new ArrayList<String>(1);
    NodeUtils.iterate(operators, FileSinkOperator.class, new Function<FileSinkOperator>() {
View Full Code Here

TOP

Related Classes of org.apache.hadoop.hive.ql.plan.MapWork

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.