Package org.apache.commons.math3.stat.descriptive.moment

Examples of org.apache.commons.math3.stat.descriptive.moment.Variance

Note that adding values using increment or incrementAll and then executing getResult will sometimes give a different, less accurate, result than executing evaluate with the full array of values. The former approach should only be used when the full array of values is not available.

The "population variance" ( sum((x_i - mean)^2) / n ) can also be computed using this statistic. The isBiasCorrected property determines whether the "population" or "sample" value is returned by the evaluate and getResult methods. To compute population variances, set this property to false.

Note that this implementation is not synchronized. If multiple threads access an instance of this class concurrently, and at least one of the threads invokes the increment() or clear() method, it must be synchronized externally.


            for (final Cluster<T> cluster : clusters) {
                if (!cluster.getPoints().isEmpty()) {

                    // compute the distance variance of the current cluster
                    final T center = cluster.getCenter();
                    final Variance stat = new Variance();
                    for (final T point : cluster.getPoints()) {
                        stat.increment(point.distanceFrom(center));
                    }
                    varianceSum += stat.getResult();

                }
            }

            if (varianceSum <= bestVarianceSum) {
View Full Code Here


        for (final Cluster<T> cluster : clusters) {
            if (!cluster.getPoints().isEmpty()) {

                // compute the distance variance of the current cluster
                final T center = cluster.getCenter();
                final Variance stat = new Variance();
                for (final T point : cluster.getPoints()) {
                    stat.increment(point.distanceFrom(center));
                }
                final double variance = stat.getResult();

                // select the cluster with the largest variance
                if (variance > maxVariance) {
                    maxVariance = variance;
                    selected = cluster;
View Full Code Here

     *
     * @return The population variance, Double.NaN if no values have been added,
     * or 0.0 for a single value set.
     */
    public double getPopulationVariance() {
        return apply(new Variance(false));
    }
View Full Code Here

     * Calculates the variance of the y values.
     *
     * @return Y variance
     */
    protected double calculateYVariance() {
        return new Variance().evaluate(yVector.toArray());
    }
View Full Code Here

            TestUtils.assertEquals(new GeometricMean().evaluate(values), dstats.getGeometricMean(), tol);
            TestUtils.assertEquals(dstats.getMin(), sstats.getMin(), tol);
            TestUtils.assertEquals(new Min().evaluate(values), dstats.getMin(), tol);
            TestUtils.assertEquals(dstats.getStandardDeviation(), sstats.getStandardDeviation(), tol);
            TestUtils.assertEquals(dstats.getVariance(), sstats.getVariance(), tol);
            TestUtils.assertEquals(new Variance().evaluate(values), dstats.getVariance(), tol);
            TestUtils.assertEquals(dstats.getSum(), sstats.getSum(), tol);
            TestUtils.assertEquals(new Sum().evaluate(values), dstats.getSum(), tol);
            TestUtils.assertEquals(dstats.getSumsq(), sstats.getSumsq(), tol);
            TestUtils.assertEquals(new SumOfSquares().evaluate(values), dstats.getSumsq(), tol);
            TestUtils.assertEquals(dstats.getPopulationVariance(), sstats.getPopulationVariance(), tol);
            TestUtils.assertEquals(new Variance(false).evaluate(values), dstats.getPopulationVariance(), tol);
        }
    }
View Full Code Here

    public void testConsistency() {
        final RealMatrix matrix = createRealMatrix(swissData, 47, 5);
        final RealMatrix covarianceMatrix = new Covariance(matrix).getCovarianceMatrix();

        // Variances on the diagonal
        Variance variance = new Variance();
        for (int i = 0; i < 5; i++) {
            Assert.assertEquals(variance.evaluate(matrix.getColumn(i)), covarianceMatrix.getEntry(i,i), 10E-14);
        }

        // Symmetry, column-consistency
        Assert.assertEquals(covarianceMatrix.getEntry(2, 3),
                new Covariance().covariance(matrix.getColumn(2), matrix.getColumn(3), true), 10E-14);
        Assert.assertEquals(covarianceMatrix.getEntry(2, 3), covarianceMatrix.getEntry(3, 2), Double.MIN_VALUE);

        // All columns same -> all entries = column variance
        RealMatrix repeatedColumns = new Array2DRowRealMatrix(47, 3);
        for (int i = 0; i < 3; i++) {
            repeatedColumns.setColumnMatrix(i, matrix.getColumnMatrix(0));
        }
        RealMatrix repeatedCovarianceMatrix = new Covariance(repeatedColumns).getCovarianceMatrix();
        double columnVariance = variance.evaluate(matrix.getColumn(0));
        for (int i = 0; i < 3; i++) {
            for (int j = 0; j < 3; j++) {
                Assert.assertEquals(columnVariance, repeatedCovarianceMatrix.getEntry(i, j), 10E-14);
            }
        }
View Full Code Here

     */
    @Test
    public void testOverrideVarianceWithMathClass() {
        double[] scores = {1, 2, 3, 4};
        SummaryStatistics stats = new SummaryStatistics();
        stats.setVarianceImpl(new Variance(false)); //use "population variance"
        for(double i : scores) {
          stats.addValue(i);
        }
        Assert.assertEquals((new Variance(false)).evaluate(scores),stats.getVariance(), 0);
    }
View Full Code Here

        }
        return this.mean;
    }
    private Variance _getVariance() {
        if (this.variance == null) {
            this.variance = new Variance(this._getSecondMoment());
        }
        return this.variance;
    }
View Full Code Here

     * <p>Double.NaN is returned if no values have been added.</p>
     *
     * @return the population variance
     */
    public double getPopulationVariance() {
        Variance populationVariance = new Variance(_getSecondMoment());
        populationVariance.setBiasCorrected(false);
        return populationVariance.getResult();
    }
View Full Code Here

        double[] values = new double[length];
        for (int i = 0; i < length; i++) {
            values[i] = start + i;
        }

        Variance variance = new Variance(false);
        return variance.evaluate(values);
    }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.stat.descriptive.moment.Variance

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.