Package org.apache.commons.math3.stat.descriptive.moment

Examples of org.apache.commons.math3.stat.descriptive.moment.Variance

Note that adding values using increment or incrementAll and then executing getResult will sometimes give a different, less accurate, result than executing evaluate with the full array of values. The former approach should only be used when the full array of values is not available.

The "population variance" ( sum((x_i - mean)^2) / n ) can also be computed using this statistic. The isBiasCorrected property determines whether the "population" or "sample" value is returned by the evaluate and getResult methods. To compute population variances, set this property to false.

Note that this implementation is not synchronized. If multiple threads access an instance of this class concurrently, and at least one of the threads invokes the increment() or clear() method, it must be synchronized externally.


            for (final Cluster<T> cluster : clusters) {
                if (!cluster.getPoints().isEmpty()) {

                    // compute the distance variance of the current cluster
                    final T center = cluster.getCenter();
                    final Variance stat = new Variance();
                    for (final T point : cluster.getPoints()) {
                        stat.increment(point.distanceFrom(center));
                    }
                    varianceSum += stat.getResult();

                }
            }

            if (varianceSum <= bestVarianceSum) {
View Full Code Here


        for (final Cluster<T> cluster : clusters) {
            if (!cluster.getPoints().isEmpty()) {

                // compute the distance variance of the current cluster
                final T center = cluster.getCenter();
                final Variance stat = new Variance();
                for (final T point : cluster.getPoints()) {
                    stat.increment(point.distanceFrom(center));
                }
                final double variance = stat.getResult();

                // select the cluster with the largest variance
                if (variance > maxVariance) {
                    maxVariance = variance;
                    selected = cluster;
View Full Code Here

     * @return the population variance of the values or Double.NaN if the array is empty
     * @throws MathIllegalArgumentException if the array is null
     */
    public static double populationVariance(final double[] values)
    throws MathIllegalArgumentException {
        return new Variance(false).evaluate(values);
    }
View Full Code Here

     * @throws MathIllegalArgumentException if the array is null or the array index
     *  parameters are not valid
     */
    public static double populationVariance(final double[] values, final int begin,
            final int length) throws MathIllegalArgumentException {
        return new Variance(false).evaluate(values, begin, length);
    }
View Full Code Here

     * @throws MathIllegalArgumentException if the array is null or the array index
     *  parameters are not valid
     */
    public static double populationVariance(final double[] values, final double mean,
            final int begin, final int length) throws MathIllegalArgumentException {
        return new Variance(false).evaluate(values, mean, begin, length);
    }
View Full Code Here

     * @return the population variance of the values or Double.NaN if the array is empty
     * @throws MathIllegalArgumentException if the array is null
     */
    public static double populationVariance(final double[] values, final double mean)
    throws MathIllegalArgumentException {
        return new Variance(false).evaluate(values, mean);
    }
View Full Code Here

     * Calculates the variance of the y values.
     *
     * @return Y variance
     */
    protected double calculateYVariance() {
        return new Variance().evaluate(yVector.toArray());
    }
View Full Code Here

     * @throws MathIllegalArgumentException if the matrix does not contain sufficient data
     */
    protected RealMatrix computeCovarianceMatrix(RealMatrix matrix, boolean biasCorrected)
    throws MathIllegalArgumentException {
        int dimension = matrix.getColumnDimension();
        Variance variance = new Variance(biasCorrected);
        RealMatrix outMatrix = new BlockRealMatrix(dimension, dimension);
        for (int i = 0; i < dimension; i++) {
            for (int j = 0; j < i; j++) {
              double cov = covariance(matrix.getColumn(i), matrix.getColumn(j), biasCorrected);
              outMatrix.setEntry(i, j, cov);
              outMatrix.setEntry(j, i, cov);
            }
            outMatrix.setEntry(i, i, variance.evaluate(matrix.getColumn(i)));
        }
        return outMatrix;
    }
View Full Code Here

     *
     * @return The population variance, Double.NaN if no values have been added,
     * or 0.0 for a single value set.
     */
    public double getPopulationVariance() {
        return apply(new Variance(false));
    }
View Full Code Here

        for (final CentroidCluster<T> cluster : clusters) {
            if (!cluster.getPoints().isEmpty()) {

                // compute the distance variance of the current cluster
                final Clusterable center = cluster.getCenter();
                final Variance stat = new Variance();
                for (final T point : cluster.getPoints()) {
                    stat.increment(distance(point, center));
                }
                final double variance = stat.getResult();

                // select the cluster with the largest variance
                if (variance > maxVariance) {
                    maxVariance = variance;
                    selected = cluster;
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.stat.descriptive.moment.Variance

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.