Package org.apache.commons.math3.linear

Examples of org.apache.commons.math3.linear.RealVector$SparseEntryIterator


            final Point2D.Double p = obs[i];
            problem.addPoint(p.x, p.y);
        }

        // Direct solution (using simple regression).
        final RealVector regress = new ArrayRealVector(problem.solve(), false);

        // Dummy optimizer (to compute the chi-square).
        final LeastSquaresProblem lsp = builder(problem).build();

        final double[] init = { slope, offset };
        // Get chi-square of the best parameters set for the given set of
        // observations.
        final double bestChi2N = getChi2N(lsp, regress);
        final RealVector sigma = lsp.evaluate(regress).getSigma(1e-14);

        // Monte-Carlo (generates a grid of parameters).
        final int mcRepeat = MONTE_CARLO_RUNS;
        final int gridSize = (int) FastMath.sqrt(mcRepeat);

        // Parameters found for each of Monte-Carlo run.
        // Index 0 = slope
        // Index 1 = offset
        // Index 2 = normalized chi2
        final List<double[]> paramsAndChi2 = new ArrayList<double[]>(gridSize * gridSize);

        final double slopeRange = 10 * sigma.getEntry(0);
        final double offsetRange = 10 * sigma.getEntry(1);
        final double minSlope = slope - 0.5 * slopeRange;
        final double minOffset = offset - 0.5 * offsetRange;
        final double deltaSlope =  slopeRange/ gridSize;
        final double deltaOffset = offsetRange / gridSize;
        for (int i = 0; i < gridSize; i++) {
            final double s = minSlope + i * deltaSlope;
            for (int j = 0; j < gridSize; j++) {
                final double o = minOffset + j * deltaOffset;
                final double chi2N = getChi2N(lsp,
                        new ArrayRealVector(new double[] {s, o}, false));

                paramsAndChi2.add(new double[] {s, o, chi2N});
            }
        }

        // Output (for use with "gnuplot").

        // Some info.

        // For plotting separately sets of parameters that have a large chi2.
        final double chi2NPlusOne = bestChi2N + 1;
        int numLarger = 0;

        final String lineFmt = "%+.10e %+.10e   %.8e\n";

        // Point with smallest chi-square.
        System.out.printf(lineFmt, regress.getEntry(0), regress.getEntry(1), bestChi2N);
        System.out.println(); // Empty line.

        // Points within the confidence interval.
        for (double[] d : paramsAndChi2) {
            if (d[2] <= chi2NPlusOne) {
                System.out.printf(lineFmt, d[0], d[1], d[2]);
            }
        }
        System.out.println(); // Empty line.

        // Points outside the confidence interval.
        for (double[] d : paramsAndChi2) {
            if (d[2] > chi2NPlusOne) {
                ++numLarger;
                System.out.printf(lineFmt, d[0], d[1], d[2]);
            }
        }
        System.out.println(); // Empty line.

        System.out.println("# sigma=" + sigma.toString());
        System.out.println("# " + numLarger + " sets filtered out");
    }
View Full Code Here


        // the measurement matrix -> we measure the voltage directly
        final RealMatrix H = new Array2DRowRealMatrix(new double[] { 1d });

        // the initial state vector -> slightly wrong
        final RealVector x0 = new ArrayRealVector(new double[] { 1.45 });
       
        // the process covariance matrix
        final RealMatrix Q = new Array2DRowRealMatrix(new double[] { processNoise * processNoise });

        // the initial error covariance -> assume a large error at the beginning
View Full Code Here

     *
     * @return residual sum of squares
     * @since 2.2
     */
    public double calculateResidualSumOfSquares() {
        final RealVector residuals = calculateResiduals();
        // No advertised DME, args are valid
        return residuals.dotProduct(residuals);
    }
View Full Code Here

     * @return error variance
     * @since 2.2
     */
    @Override
    protected double calculateErrorVariance() {
        RealVector residuals = calculateResiduals();
        double t = residuals.dotProduct(getOmegaInverse().operate(residuals));
        return t / (getX().getRowDimension() - getX().getColumnDimension());

    }
View Full Code Here

     * @param point Interpolation point.
     * @return the interpolated value.
     * @throws DimensionMismatchException if point dimension does not math sample
     */
    public double value(double[] point) throws DimensionMismatchException {
        final RealVector p = new ArrayRealVector(point);

        // Reset.
        for (MicrosphereSurfaceElement md : microsphere) {
            md.reset();
        }

        // Compute contribution of each sample points to the microsphere elements illumination
        for (Map.Entry<RealVector, Double> sd : samples.entrySet()) {

            // Vector between interpolation point and current sample point.
            final RealVector diff = sd.getKey().subtract(p);
            final double diffNorm = diff.getNorm();

            if (FastMath.abs(diffNorm) < FastMath.ulp(1d)) {
                // No need to interpolate, as the interpolation point is
                // actually (very close to) one of the sampled points.
                return sd.getValue();
View Full Code Here

                    }
                    hs.setEntry(i, hs.getEntry(i) + modelSecondDerivativesValues.getEntry(ih) * s.getEntry(j));
                    ih++;
                }
            }
            final RealVector tmp = interpolationPoints.operate(s).ebeMultiply(modelSecondDerivativesParameters);
            for (int k = 0; k < npt; k++) {
                if (modelSecondDerivativesParameters.getEntry(k) != ZERO) {
                    for (int i = 0; i < n; i++) {
                        hs.setEntry(i, hs.getEntry(i) + tmp.getEntry(k) * interpolationPoints.getEntry(k, i));
                    }
                }
            }
            if (crvmin != ZERO) {
                state = 50; break;
View Full Code Here

                    }
                    hs.setEntry(i, hs.getEntry(i) + modelSecondDerivativesValues.getEntry(ih) * s.getEntry(j));
                    ih++;
                }
            }
            final RealVector tmp = interpolationPoints.operate(s).ebeMultiply(modelSecondDerivativesParameters);
            for (int k = 0; k < npt; k++) {
                if (modelSecondDerivativesParameters.getEntry(k) != ZERO) {
                    for (int i = 0; i < n; i++) {
                        hs.setEntry(i, hs.getEntry(i) + tmp.getEntry(k) * interpolationPoints.getEntry(k, i));
                    }
                }
            }
            if (crvmin != ZERO) {
                state = 50; break;
View Full Code Here

        if (getNumObjectiveFunctions() == 2) {
            matrix.setEntry(0, 0, -1);
        }
        int zIndex = (getNumObjectiveFunctions() == 1) ? 0 : 1;
        matrix.setEntry(zIndex, zIndex, maximize ? 1 : -1);
        RealVector objectiveCoefficients =
            maximize ? f.getCoefficients().mapMultiply(-1) : f.getCoefficients();
        copyArray(objectiveCoefficients.toArray(), matrix.getDataRef()[zIndex]);
        matrix.setEntry(zIndex, width - 1,
            maximize ? f.getConstantTerm() : -1 * f.getConstantTerm());

        if (!restrictToNonNegative) {
            matrix.setEntry(zIndex, getSlackVariableOffset() - 1,
View Full Code Here

                return Double.compare(weightedResidual(o1),
                                      weightedResidual(o2));
            }

            private double weightedResidual(final PointVectorValuePair pv) {
                final RealVector v = new ArrayRealVector(pv.getValueRef(), false);
                final RealVector r = target.subtract(v);
                return r.dotProduct(weight.operate(r));
            }
        };
    }
View Full Code Here

    this.solver = solver;
  }

  @Override
  public float[] solveDToF(double[] b) {
    RealVector vec = solver.solve(new ArrayRealVector(b, false));
    float[] result = new float[b.length];
    for (int i = 0; i < result.length; i++) {
      result[i] = (float) vec.getEntry(i);
    }
    return result;
  }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.linear.RealVector$SparseEntryIterator

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.