Package org.apache.commons.math3.linear

Examples of org.apache.commons.math3.linear.RealVector$SparseEntryIterator


        Optimum optimum = optimizer.optimize(
                problem.getBuilder().start(new double[]{2, 2, 2, 2, 2, 2}).build());

        Assert.assertEquals(0, optimum.getRMS(), TOl);
        RealVector point = optimum.getPoint();
        //the first two elements are under constrained
        //check first two elements obey the constraint: sum to 3
        Assert.assertEquals(3, point.getEntry(0) + point.getEntry(1), TOl);
        //#constrains = #states fro the last 4 elements
        assertEquals(TOl, point.getSubVector(2, 4), 3, 4, 5, 6);
    }
View Full Code Here


                           final double errParams,
                           final double errParamsSd) {

        final Optimum optimum = optimizer.optimize(builder(dataset).build());

        final RealVector actual = optimum.getPoint();
        for (int i = 0; i < actual.getDimension(); i++) {
            double expected = dataset.getParameter(i);
            double delta = FastMath.abs(errParams * expected);
            Assert.assertEquals(dataset.getName() + ", param #" + i,
                    expected, actual.getEntry(i), delta);
        }
    }
View Full Code Here

                        .start(start)
                        .maxIterations(20)
                        .build()
        );

        final RealVector solution = optimum.getPoint();
        final double[] expectedSolution = { 10.4, 958.3, 131.4, 33.9, 205.0 };

        final RealMatrix covarMatrix = optimum.getCovariances(1e-14);
        final double[][] expectedCovarMatrix = {
            { 3.38, -3.69, 27.98, -2.34, -49.24 },
            { -3.69, 2492.26, 81.89, -69.21, -8.9 },
            { 27.98, 81.89, 468.99, -44.22, -615.44 },
            { -2.34, -69.21, -44.22, 6.39, 53.80 },
            { -49.24, -8.9, -615.44, 53.8, 929.45 }
        };

        final int numParams = expectedSolution.length;

        // Check that the computed solution is within the reference error range.
        for (int i = 0; i < numParams; i++) {
            final double error = FastMath.sqrt(expectedCovarMatrix[i][i]);
            Assert.assertEquals("Parameter " + i, expectedSolution[i], solution.getEntry(i), error);
        }

        // Check that each entry of the computed covariance matrix is within 10%
        // of the reference matrix entry.
        for (int i = 0; i < numParams; i++) {
View Full Code Here

          {27, 37, 47}  
        };
        OLSMultipleLinearRegression regression = new OLSMultipleLinearRegression();
        regression.newSampleData(y, x);
        RealMatrix combinedX = regression.getX().copy();
        RealVector combinedY = regression.getY().copy();
        regression.newXSampleData(x);
        regression.newYSampleData(y);
        Assert.assertEquals(combinedX, regression.getX());
        Assert.assertEquals(combinedY, regression.getY());
       
View Full Code Here

    }

    @Test
    public void testComputeResiduals() {
        //setup
        RealVector point = new ArrayRealVector(2);
        Evaluation evaluation = new LeastSquaresBuilder()
                .target(new ArrayRealVector(new double[]{3,-1}))
                .model(new MultivariateJacobianFunction() {
                    public Pair<RealVector, RealMatrix> value(RealVector point) {
                        return new Pair<RealVector, RealMatrix>(
View Full Code Here

    }

    @Test
    public void testComputeCovariance() throws IOException {
        //setup
        RealVector point = new ArrayRealVector(2);
        Evaluation evaluation = new LeastSquaresBuilder()
                .model(new MultivariateJacobianFunction() {
                    public Pair<RealVector, RealMatrix> value(RealVector point) {
                        return new Pair<RealVector, RealMatrix>(
                                new ArrayRealVector(2),
View Full Code Here

    }

    @Test
    public void testComputeValueAndJacobian() {
        //setup
        final RealVector point = new ArrayRealVector(new double[]{1, 2});
        Evaluation evaluation = new LeastSquaresBuilder()
                .weight(new DiagonalMatrix(new double[]{16, 4}))
                .model(new MultivariateJacobianFunction() {
                    public Pair<RealVector, RealMatrix> value(RealVector actualPoint) {
                        //verify correct values passed in
                        Assert.assertArrayEquals(
                                point.toArray(), actualPoint.toArray(), Precision.EPSILON);
                        //return values
                        return new Pair<RealVector, RealMatrix>(
                                new ArrayRealVector(new double[]{3, 4}),
                                MatrixUtils.createRealMatrix(new double[][]{{5, 6}, {7, 8}})
                        );
                    }
                })
                .target(new double[2])
                .build()
                .evaluate(point);

        //action
        RealVector residuals = evaluation.getResiduals();
        RealMatrix jacobian = evaluation.getJacobian();

        //verify
        Assert.assertArrayEquals(evaluation.getPoint().toArray(), point.toArray(), 0);
        Assert.assertArrayEquals(new double[]{-12, -8}, residuals.toArray(), Precision.EPSILON);
        TestUtils.assertEquals(
                "jacobian",
                jacobian,
                MatrixUtils.createRealMatrix(new double[][]{{20, 24},{14, 16}}),
                Precision.EPSILON);
View Full Code Here

        final double[] expected = dataset.getParametersStandardDeviations();

        final Evaluation evaluation = lsp.evaluate(lsp.getStart());
        final double cost = evaluation.getCost();
        final RealVector sig = evaluation.getSigma(1e-14);
        final int dof = lsp.getObservationSize() - lsp.getParameterSize();
        for (int i = 0; i < sig.getDimension(); i++) {
            final double actual = FastMath.sqrt(cost * cost / dof) * sig.getEntry(i);
            Assert.assertEquals(dataset.getName() + ", parameter #" + i,
                                expected[i], actual, 1e-6 * expected[i]);
        }
    }
View Full Code Here

    public void testEvaluateCopiesPoint() throws IOException {
        //setup
        StatisticalReferenceDataset dataset
                = StatisticalReferenceDatasetFactory.createKirby2();
        LeastSquaresProblem lsp = builder(dataset).build();
        RealVector point = new ArrayRealVector(lsp.getParameterSize());

        //action
        Evaluation evaluation = lsp.evaluate(point);

        //verify
        Assert.assertNotSame(point, evaluation.getPoint());
        point.setEntry(0, 1);
        Assert.assertEquals(evaluation.getPoint().getEntry(0), 0, 0);
    }
View Full Code Here

        for (int i = 0; i < numParams; i++) {
            paramsFoundByDirectSolution[i] = new SummaryStatistics();
            sigmaEstimate[i] = new SummaryStatistics();
        }

        final RealVector init = new ArrayRealVector(new double[]{ slope, offset }, false);

        // Monte-Carlo (generates many sets of observations).
        final int mcRepeat = MONTE_CARLO_RUNS;
        int mcCount = 0;
        while (mcCount < mcRepeat) {
            // Observations.
            final Point2D.Double[] obs = lineGenerator.generate(numObs);

            final StraightLineProblem problem = new StraightLineProblem(yError);
            for (int i = 0; i < numObs; i++) {
                final Point2D.Double p = obs[i];
                problem.addPoint(p.x, p.y);
            }

            // Direct solution (using simple regression).
            final double[] regress = problem.solve();

            // Estimation of the standard deviation (diagonal elements of the
            // covariance matrix).
            final LeastSquaresProblem lsp = builder(problem).build();

            final RealVector sigma = lsp.evaluate(init).getSigma(1e-14);

            // Accumulate statistics.
            for (int i = 0; i < numParams; i++) {
                paramsFoundByDirectSolution[i].addValue(regress[i]);
                sigmaEstimate[i].addValue(sigma.getEntry(i));
            }

            // Next Monte-Carlo.
            ++mcCount;
        }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.linear.RealVector$SparseEntryIterator

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.