Package org.apache.commons.math3.linear

Examples of org.apache.commons.math3.linear.Array2DRowRealMatrix


     
      List<SiteWithPolynomial> nearestSites =
          nearestSiteMap.get(site);
     
      RealVector vector = new ArrayRealVector(SITES_FOR_APPROX);
      RealMatrix matrix = new Array2DRowRealMatrix(
          SITES_FOR_APPROX, DefaultPolynomial.NUM_COEFFS);
     
      for (int row = 0; row < SITES_FOR_APPROX; row++) {
        SiteWithPolynomial nearSite = nearestSites.get(row);
        DefaultPolynomial.populateMatrix(matrix, row, nearSite.pos.x, nearSite.pos.z);
View Full Code Here


        }

        // solve the rectangular system in the least square sense
        // to get the best estimate of the Nordsieck vector [s2 ... sk]
        QRDecomposition decomposition;
        decomposition = new QRDecomposition(new Array2DRowRealMatrix(a, false));
        RealMatrix x = decomposition.getSolver().solve(new Array2DRowRealMatrix(b, false));
        return new Array2DRowRealMatrix(x.getData(), false);
    }
View Full Code Here

            // update Nordsieck vector
            final double[] predictedScaled = new double[y0.length];
            for (int j = 0; j < y0.length; ++j) {
                predictedScaled[j] = stepSize * yDot[j];
            }
            final Array2DRowRealMatrix nordsieckTmp = updateHighOrderDerivativesPhase1(nordsieck);
            updateHighOrderDerivativesPhase2(scaled, predictedScaled, nordsieckTmp);
            interpolator.reinitialize(stepEnd, stepSize, predictedScaled, nordsieckTmp);

            // discrete events handling
            interpolator.storeTime(stepEnd);
View Full Code Here

        Integer[] drop = columnsToDrop.toArray(new Integer[columnsToDrop.size()]);
        for (int i = drop.length - 1; i >= 0; i--) {
            columnLabels.remove((int) drop[i]);
        }

        this.tableau = new Array2DRowRealMatrix(matrix);
        this.numArtificialVariables = 0;
        // need to update the basic variable mappings as row/columns have been dropped
        initializeBasicVariables(getNumObjectiveFunctions());
    }
View Full Code Here

        // Create augmented identity matrix
        RealMatrix Q = qr.getQ();
        final int p = qr.getR().getColumnDimension();
        final int n = Q.getColumnDimension();
        // No try-catch or advertised NotStrictlyPositiveException - NPE above if n < 3
        Array2DRowRealMatrix augI = new Array2DRowRealMatrix(n, n);
        double[][] augIData = augI.getDataRef();
        for (int i = 0; i < n; i++) {
            for (int j =0; j < n; j++) {
                if (i == j && i < p) {
                    augIData[i][j] = 1d;
                } else {
View Full Code Here

     * Add the covariance data.
     *
     * @param omega the [n,n] array representing the covariance
     */
    protected void newCovarianceData(double[][] omega){
        this.Omega = new Array2DRowRealMatrix(omega);
        this.OmegaInverse = null;
    }
View Full Code Here

            }
            for (int j = noIntercept ? 0 : 1; j < cols; j++) {
                x[i][j] = data[pointer++];
            }
        }
        this.xMatrix = new Array2DRowRealMatrix(x);
        this.yVector = new ArrayRealVector(y);
    }
View Full Code Here

        }
        if (x.length == 0) {
            throw new NoDataException();
        }
        if (noIntercept) {
            this.xMatrix = new Array2DRowRealMatrix(x, true);
        } else { // Augment design matrix with initial unitary column
            final int nVars = x[0].length;
            final double[][] xAug = new double[x.length][nVars + 1];
            for (int i = 0; i < x.length; i++) {
                if (x[i].length != nVars) {
                    throw new DimensionMismatchException(x[i].length, nVars);
                }
                xAug[i][0] = 1.0d;
                System.arraycopy(x[i], 0, xAug[i], 1, nVars);
            }
            this.xMatrix = new Array2DRowRealMatrix(xAug, false);
        }
    }
View Full Code Here

        // create a matrix of the correct size
        int width = numDecisionVariables + numSlackVariables +
        numArtificialVariables + getNumObjectiveFunctions() + 1; // + 1 is for RHS
        int height = constraints.size() + getNumObjectiveFunctions();
        Array2DRowRealMatrix matrix = new Array2DRowRealMatrix(height, width);

        // initialize the objective function rows
        if (getNumObjectiveFunctions() == 2) {
            matrix.setEntry(0, 0, -1);
        }

        int zIndex = (getNumObjectiveFunctions() == 1) ? 0 : 1;
        matrix.setEntry(zIndex, zIndex, maximize ? 1 : -1);
        RealVector objectiveCoefficients = maximize ? f.getCoefficients().mapMultiply(-1) : f.getCoefficients();
        copyArray(objectiveCoefficients.toArray(), matrix.getDataRef()[zIndex]);
        matrix.setEntry(zIndex, width - 1, maximize ? f.getConstantTerm() : -1 * f.getConstantTerm());

        if (!restrictToNonNegative) {
            matrix.setEntry(zIndex, getSlackVariableOffset() - 1,
                            getInvertedCoefficientSum(objectiveCoefficients));
        }

        // initialize the constraint rows
        int slackVar = 0;
        int artificialVar = 0;
        for (int i = 0; i < constraints.size(); i++) {
            LinearConstraint constraint = constraints.get(i);
            int row = getNumObjectiveFunctions() + i;

            // decision variable coefficients
            copyArray(constraint.getCoefficients().toArray(), matrix.getDataRef()[row]);

            // x-
            if (!restrictToNonNegative) {
                matrix.setEntry(row, getSlackVariableOffset() - 1,
                                getInvertedCoefficientSum(constraint.getCoefficients()));
            }

            // RHS
            matrix.setEntry(row, width - 1, constraint.getValue());

            // slack variables
            if (constraint.getRelationship() == Relationship.LEQ) {
                matrix.setEntry(row, getSlackVariableOffset() + slackVar++, 1)// slack
            } else if (constraint.getRelationship() == Relationship.GEQ) {
                matrix.setEntry(row, getSlackVariableOffset() + slackVar++, -1); // excess
            }

            // artificial variables
            if ((constraint.getRelationship() == Relationship.EQ) ||
                (constraint.getRelationship() == Relationship.GEQ)) {
                matrix.setEntry(0, getArtificialVariableOffset() + artificialVar, 1);
                matrix.setEntry(row, getArtificialVariableOffset() + artificialVar++, 1);
                matrix.setRowVector(0, matrix.getRowVector(0).subtract(matrix.getRowVector(row)));
            }
        }

        return matrix;
    }
View Full Code Here

            return new ArrayRealVector(value.value(params), false);
        }

        /** {@inheritDoc} */
        public RealMatrix computeJacobian(final double[] params) {
            return new Array2DRowRealMatrix(jacobian.value(params), false);
        }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.linear.Array2DRowRealMatrix

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.