Package org.apache.commons.math3.linear

Examples of org.apache.commons.math3.linear.Array2DRowRealMatrix


            }

            // Compute new covariance matrices
            final RealMatrix[] newCovMats = new RealMatrix[k];
            for (int j = 0; j < k; j++) {
                newCovMats[j] = new Array2DRowRealMatrix(numCols, numCols);
            }
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < k; j++) {
                    final RealMatrix vec
                        = new Array2DRowRealMatrix(MathArrays.ebeSubtract(data[i], newMeans[j]));
                    final RealMatrix dataCov
                        = vec.multiply(vec.transpose()).scalarMultiply(gamma[i][j]);
                    newCovMats[j] = newCovMats[j].add(dataCov);
                }
            }

            // Converting to arrays for use by fitted model
View Full Code Here


        final double[] y0   = equations.getCompleteState();
        final double[] y    = y0.clone();
        final double[] yDot = new double[y.length];
        final double[] yTmp = new double[y.length];
        final double[] predictedScaled = new double[y.length];
        Array2DRowRealMatrix nordsieckTmp = null;

        // set up two interpolators sharing the integrator arrays
        final NordsieckStepInterpolator interpolator = new NordsieckStepInterpolator();
        interpolator.reinitialize(y, forward,
                                  equations.getPrimaryMapper(), equations.getSecondaryMappers());

        // set up integration control objects
        initIntegration(equations.getTime(), y0, t);

        // compute the initial Nordsieck vector using the configured starter integrator
        start(equations.getTime(), y, t);
        interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck);
        interpolator.storeTime(stepStart);

        double hNew = stepSize;
        interpolator.rescale(hNew);

        isLastStep = false;
        do {

            double error = 10;
            while (error >= 1.0) {

                stepSize = hNew;

                // predict a first estimate of the state at step end (P in the PECE sequence)
                final double stepEnd = stepStart + stepSize;
                interpolator.setInterpolatedTime(stepEnd);
                final ExpandableStatefulODE expandable = getExpandable();
                final EquationsMapper primary = expandable.getPrimaryMapper();
                primary.insertEquationData(interpolator.getInterpolatedState(), yTmp);
                int index = 0;
                for (final EquationsMapper secondary : expandable.getSecondaryMappers()) {
                    secondary.insertEquationData(interpolator.getInterpolatedSecondaryState(index), yTmp);
                    ++index;
                }

                // evaluate a first estimate of the derivative (first E in the PECE sequence)
                computeDerivatives(stepEnd, yTmp, yDot);

                // update Nordsieck vector
                for (int j = 0; j < y0.length; ++j) {
                    predictedScaled[j] = stepSize * yDot[j];
                }
                nordsieckTmp = updateHighOrderDerivativesPhase1(nordsieck);
                updateHighOrderDerivativesPhase2(scaled, predictedScaled, nordsieckTmp);

                // apply correction (C in the PECE sequence)
                error = nordsieckTmp.walkInOptimizedOrder(new Corrector(y, predictedScaled, yTmp));

                if (error >= 1.0) {
                    // reject the step and attempt to reduce error by stepsize control
                    final double factor = computeStepGrowShrinkFactor(error);
                    hNew = filterStep(stepSize * factor, forward, false);
View Full Code Here

        /*
         * Here the rounding part comes into play: use
         * RealMatrix instead of FieldMatrix<BigFraction>
         */
        final RealMatrix H = new Array2DRowRealMatrix(m, m);

        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < m; ++j) {
                H.setEntry(i, j, HBigFraction.getEntry(i, j).doubleValue());
            }
        }

        final RealMatrix Hpower = H.power(n);

        double pFrac = Hpower.getEntry(k - 1, k - 1);

        for (int i = 1; i <= n; ++i) {
            pFrac *= (double) i / (double) n;
View Full Code Here

            }
        }

        this.means = MathArrays.copyOf(means);

        covarianceMatrix = new Array2DRowRealMatrix(covariances);

        // Covariance matrix eigen decomposition.
        final EigenDecomposition covMatDec = new EigenDecomposition(covarianceMatrix);

        // Compute and store the inverse.
        covarianceMatrixInverse = covMatDec.getSolver().getInverse();
        // Compute and store the determinant.
        covarianceMatrixDeterminant = covMatDec.getDeterminant();

        // Eigenvalues of the covariance matrix.
        final double[] covMatEigenvalues = covMatDec.getRealEigenvalues();

        for (int i = 0; i < covMatEigenvalues.length; i++) {
            if (covMatEigenvalues[i] < 0) {
                throw new NonPositiveDefiniteMatrixException(covMatEigenvalues[i], i, 0);
            }
        }

        // Matrix where each column is an eigenvector of the covariance matrix.
        final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim);
        for (int v = 0; v < dim; v++) {
            final double[] evec = covMatDec.getEigenvector(v).toArray();
            covMatEigenvectors.setColumn(v, evec);
        }

        final RealMatrix tmpMatrix = covMatEigenvectors.transpose();

        // Scale each eigenvector by the square root of its eigenvalue.
        for (int row = 0; row < dim; row++) {
            final double factor = FastMath.sqrt(covMatEigenvalues[row]);
            for (int col = 0; col < dim; col++) {
                tmpMatrix.multiplyEntry(row, col, factor);
            }
        }

        samplingMatrix = covMatEigenvectors.multiply(tmpMatrix);
    }
View Full Code Here

                               final double[][] processNoise,
                               final double[] initialStateEstimate,
                               final double[][] initialErrorCovariance)
            throws NullArgumentException, NoDataException, DimensionMismatchException {

        this(new Array2DRowRealMatrix(stateTransition),
                new Array2DRowRealMatrix(control),
                new Array2DRowRealMatrix(processNoise),
                new ArrayRealVector(initialStateEstimate),
                new Array2DRowRealMatrix(initialErrorCovariance));
    }
View Full Code Here

    public DefaultProcessModel(final double[][] stateTransition,
                               final double[][] control,
                               final double[][] processNoise)
            throws NullArgumentException, NoDataException, DimensionMismatchException {

        this(new Array2DRowRealMatrix(stateTransition),
                new Array2DRowRealMatrix(control),
                new Array2DRowRealMatrix(processNoise), null, null);
    }
View Full Code Here

        MathUtils.checkNotNull(transitionMatrix);
        transitionMatrixT = transitionMatrix.transpose();

        // create an empty matrix if no control matrix was given
        if (processModel.getControlMatrix() == null) {
            controlMatrix = new Array2DRowRealMatrix();
        } else {
            controlMatrix = processModel.getControlMatrix();
        }

        measurementMatrix = measurementModel.getMeasurementMatrix();
View Full Code Here

     * @throws DimensionMismatchException
     *             if any of the input matrices is non-rectangular
     */
    public DefaultMeasurementModel(final double[][] measMatrix, final double[][] measNoise)
            throws NullArgumentException, NoDataException, DimensionMismatchException {
        this(new Array2DRowRealMatrix(measMatrix), new Array2DRowRealMatrix(measNoise));
    }
View Full Code Here

        // create a matrix of the correct size
        int width = numDecisionVariables + numSlackVariables +
        numArtificialVariables + getNumObjectiveFunctions() + 1; // + 1 is for RHS
        int height = constraints.size() + getNumObjectiveFunctions();
        Array2DRowRealMatrix matrix = new Array2DRowRealMatrix(height, width);

        // initialize the objective function rows
        if (getNumObjectiveFunctions() == 2) {
            matrix.setEntry(0, 0, -1);
        }
        int zIndex = (getNumObjectiveFunctions() == 1) ? 0 : 1;
        matrix.setEntry(zIndex, zIndex, maximize ? 1 : -1);
        RealVector objectiveCoefficients =
            maximize ? f.getCoefficients().mapMultiply(-1) : f.getCoefficients();
        copyArray(objectiveCoefficients.toArray(), matrix.getDataRef()[zIndex]);
        matrix.setEntry(zIndex, width - 1,
            maximize ? f.getConstantTerm() : -1 * f.getConstantTerm());

        if (!restrictToNonNegative) {
            matrix.setEntry(zIndex, getSlackVariableOffset() - 1,
                getInvertedCoefficientSum(objectiveCoefficients));
        }

        // initialize the constraint rows
        int slackVar = 0;
        int artificialVar = 0;
        for (int i = 0; i < constraints.size(); i++) {
            LinearConstraint constraint = constraints.get(i);
            int row = getNumObjectiveFunctions() + i;

            // decision variable coefficients
            copyArray(constraint.getCoefficients().toArray(), matrix.getDataRef()[row]);

            // x-
            if (!restrictToNonNegative) {
                matrix.setEntry(row, getSlackVariableOffset() - 1,
                    getInvertedCoefficientSum(constraint.getCoefficients()));
            }

            // RHS
            matrix.setEntry(row, width - 1, constraint.getValue());

            // slack variables
            if (constraint.getRelationship() == Relationship.LEQ) {
                matrix.setEntry(row, getSlackVariableOffset() + slackVar++, 1)// slack
            } else if (constraint.getRelationship() == Relationship.GEQ) {
                matrix.setEntry(row, getSlackVariableOffset() + slackVar++, -1); // excess
            }

            // artificial variables
            if ((constraint.getRelationship() == Relationship.EQ) ||
                    (constraint.getRelationship() == Relationship.GEQ)) {
                matrix.setEntry(0, getArtificialVariableOffset() + artificialVar, 1);
                matrix.setEntry(row, getArtificialVariableOffset() + artificialVar++, 1);
                matrix.setRowVector(0, matrix.getRowVector(0).subtract(matrix.getRowVector(row)));
            }
        }

        return matrix;
    }
View Full Code Here

        Integer[] drop = columnsToDrop.toArray(new Integer[columnsToDrop.size()]);
        for (int i = drop.length - 1; i >= 0; i--) {
            columnLabels.remove((int) drop[i]);
        }

        this.tableau = new Array2DRowRealMatrix(matrix);
        this.numArtificialVariables = 0;
    }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.linear.Array2DRowRealMatrix

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.