Package org.apache.commons.math3.analysis.function

Examples of org.apache.commons.math3.analysis.function.Gaussian$Parametric


                return false;
            }
            final int    n = FastMath.max(1, (int) FastMath.ceil(FastMath.abs(dt) / maxCheckInterval));
            final double h = dt / n;

            final UnivariateFunction f = new UnivariateFunction() {
                public double value(final double t) throws LocalMaxCountExceededException {
                    try {
                        interpolator.setInterpolatedTime(t);
                        return handler.g(t, getCompleteState(interpolator));
                    } catch (MaxCountExceededException mcee) {
                        throw new LocalMaxCountExceededException(mcee);
                    }
                }
            };

            double ta = t0;
            double ga = g0;
            for (int i = 0; i < n; ++i) {

                // evaluate handler value at the end of the substep
                final double tb = t0 + (i + 1) * h;
                interpolator.setInterpolatedTime(tb);
                final double gb = handler.g(tb, getCompleteState(interpolator));

                // check events occurrence
                if (g0Positive ^ (gb >= 0)) {
                    // there is a sign change: an event is expected during this step

                    // variation direction, with respect to the integration direction
                    increasing = gb >= ga;

                    // find the event time making sure we select a solution just at or past the exact root
                    final double root;
                    if (solver instanceof BracketedUnivariateSolver<?>) {
                        @SuppressWarnings("unchecked")
                        BracketedUnivariateSolver<UnivariateFunction> bracketing =
                                (BracketedUnivariateSolver<UnivariateFunction>) solver;
                        root = forward ?
                               bracketing.solve(maxIterationCount, f, ta, tb, AllowedSolution.RIGHT_SIDE) :
                               bracketing.solve(maxIterationCount, f, tb, ta, AllowedSolution.LEFT_SIDE);
                    } else {
                        final double baseRoot = forward ?
                                                solver.solve(maxIterationCount, f, ta, tb) :
                                                solver.solve(maxIterationCount, f, tb, ta);
                        final int remainingEval = maxIterationCount - solver.getEvaluations();
                        BracketedUnivariateSolver<UnivariateFunction> bracketing =
                                new PegasusSolver(solver.getRelativeAccuracy(), solver.getAbsoluteAccuracy());
                        root = forward ?
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, ta, tb, AllowedSolution.RIGHT_SIDE) :
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, tb, ta, AllowedSolution.LEFT_SIDE);
                    }

                    if ((!Double.isNaN(previousEventTime)) &&
                        (FastMath.abs(root - ta) <= convergence) &&
                        (FastMath.abs(root - previousEventTime) <= convergence)) {
                        // we have either found nothing or found (again ?) a past event,
                        // retry the substep excluding this value, and taking care to have the
                        // required sign in case the g function is noisy around its zero and
                        // crosses the axis several times
                        do {
                            ta = forward ? ta + convergence : ta - convergence;
                            ga = f.value(ta);
                        } while ((g0Positive ^ (ga >= 0)) && (forward ^ (ta >= tb)));
                        --i;
                    } else if (Double.isNaN(previousEventTime) ||
                               (FastMath.abs(previousEventTime - root) > convergence)) {
                        pendingEventTime = root;
View Full Code Here


                                                    currentLearning);

        final int currentNeighbourhood = neighbourhoodSize.value(numCalls);
        // The farther away the neighbour is from the winning neuron, the
        // smaller the learning rate will become.
        final Gaussian neighbourhoodDecay
            = new Gaussian(currentLearning,
                           0,
                           1d / currentNeighbourhood);

        if (currentNeighbourhood > 0) {
            // Initial set of neurons only contains the winning neuron.
            Collection<Neuron> neighbours = new HashSet<Neuron>();
            neighbours.add(best);
            // Winning neuron must be excluded from the neighbours.
            final HashSet<Neuron> exclude = new HashSet<Neuron>();
            exclude.add(best);

            int radius = 1;
            do {
                // Retrieve immediate neighbours of the current set of neurons.
                neighbours = net.getNeighbours(neighbours, exclude);

                // Update all the neighbours.
                for (Neuron n : neighbours) {
                    updateNeighbouringNeuron(n, features, neighbourhoodDecay.value(radius));
                }

                // Add the neighbours to the exclude list so that they will
                // not be update more than once per training step.
                exclude.addAll(neighbours);
View Full Code Here

    @Test
    public void testNormalDistributionWithLargeSigma() {
        final double sigma = 1000;
        final double mean = 0;
        final double factor = 1 / (sigma * FastMath.sqrt(2 * FastMath.PI));
        final UnivariateFunction normal = new Gaussian(factor, mean, sigma);

        final double tol = 1e-2;
        final IterativeLegendreGaussIntegrator integrator =
            new IterativeLegendreGaussIntegrator(5, tol, tol);

View Full Code Here

                                                    currentLearning);

        final int currentNeighbourhood = neighbourhoodSize.value(numCalls);
        // The farther away the neighbour is from the winning neuron, the
        // smaller the learning rate will become.
        final Gaussian neighbourhoodDecay
            = new Gaussian(currentLearning,
                           0,
                           1d / currentNeighbourhood);

        if (currentNeighbourhood > 0) {
            // Initial set of neurons only contains the winning neuron.
            Collection<Neuron> neighbours = new HashSet<Neuron>();
            neighbours.add(best);
            // Winning neuron must be excluded from the neighbours.
            final HashSet<Neuron> exclude = new HashSet<Neuron>();
            exclude.add(best);

            int radius = 1;
            do {
                // Retrieve immediate neighbours of the current set of neurons.
                neighbours = net.getNeighbours(neighbours, exclude);

                // Update all the neighbours.
                for (Neuron n : neighbours) {
                    updateNeighbouringNeuron(n, features, neighbourhoodDecay.value(radius));
                }

                // Add the neighbours to the exclude list so that they will
                // not be update more than once per training step.
                exclude.addAll(neighbours);
View Full Code Here

    @Test
    public void testGaussian() {
        FiniteDifferencesDifferentiator differentiator =
                new FiniteDifferencesDifferentiator(9, 0.02);
        UnivariateDifferentiableFunction gaussian = new Gaussian(1.0, 2.0);
        UnivariateDifferentiableFunction f =
                differentiator.differentiate(gaussian);
        double[] expectedError = new double[] {
            6.939e-18, 1.284e-15, 2.477e-13, 1.168e-11, 2.840e-9, 7.971e-8
        };
       double[] maxError = new double[expectedError.length];
        for (double x = -10; x < 10; x += 0.1) {
            DerivativeStructure dsX  = new DerivativeStructure(1, maxError.length - 1, 0, x);
            DerivativeStructure yRef = gaussian.value(dsX);
            DerivativeStructure y    = f.value(dsX);
            Assert.assertEquals(f.value(dsX.getValue()), f.value(dsX).getValue(), 1.0e-15);
            for (int order = 0; order <= yRef.getOrder(); ++order) {
                maxError[order] = FastMath.max(maxError[order],
                                        FastMath.abs(yRef.getPartialDerivative(order) -
View Full Code Here

                        final double baseRoot = forward ?
                                                solver.solve(maxIterationCount, f, ta, tb) :
                                                solver.solve(maxIterationCount, f, tb, ta);
                        final int remainingEval = maxIterationCount - solver.getEvaluations();
                        BracketedUnivariateSolver<UnivariateFunction> bracketing =
                                new PegasusSolver(solver.getRelativeAccuracy(), solver.getAbsoluteAccuracy());
                        root = forward ?
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, ta, tb, AllowedSolution.RIGHT_SIDE) :
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, tb, ta, AllowedSolution.LEFT_SIDE);
View Full Code Here

                // tests for termination and stringent tolerances
                if (FastMath.abs(actRed) <= TWO_EPS &&
                    preRed <= TWO_EPS &&
                    ratio <= 2.0) {
                    throw new ConvergenceException(LocalizedFormats.TOO_SMALL_COST_RELATIVE_TOLERANCE,
                                                   costRelativeTolerance);
                } else if (delta <= TWO_EPS * xNorm) {
                    throw new ConvergenceException(LocalizedFormats.TOO_SMALL_PARAMETERS_RELATIVE_TOLERANCE,
                                                   parRelativeTolerance);
                } else if (maxCosine <= TWO_EPS) {
                    throw new ConvergenceException(LocalizedFormats.TOO_SMALL_ORTHOGONALITY_TOLERANCE,
                                                   orthoTolerance);
                }
            }
        }
    }
View Full Code Here

                for (int j = k; j < nR; ++j) {
                    double aki = weightedJacobian[j][permutation[i]];
                    norm2 += aki * aki;
                }
                if (Double.isInfinite(norm2) || Double.isNaN(norm2)) {
                    throw new ConvergenceException(LocalizedFormats.UNABLE_TO_PERFORM_QR_DECOMPOSITION_ON_JACOBIAN,
                                                   nR, nC);
                }
                if (norm2 > ak2) {
                    nextColumn = i;
                    ak2        = norm2;
View Full Code Here

                }

                // tests for termination and stringent tolerances
                // (2.2204e-16 is the machine epsilon for IEEE754)
                if ((FastMath.abs(actRed) <= 2.2204e-16) && (preRed <= 2.2204e-16) && (ratio <= 2.0)) {
                    throw new ConvergenceException(LocalizedFormats.TOO_SMALL_COST_RELATIVE_TOLERANCE,
                                                   costRelativeTolerance);
                } else if (delta <= 2.2204e-16 * xNorm) {
                    throw new ConvergenceException(LocalizedFormats.TOO_SMALL_PARAMETERS_RELATIVE_TOLERANCE,
                                                   parRelativeTolerance);
                } else if (maxCosine <= 2.2204e-16)  {
                    throw new ConvergenceException(LocalizedFormats.TOO_SMALL_ORTHOGONALITY_TOLERANCE,
                                                   orthoTolerance);
                }
            }
        }
    }
View Full Code Here

                for (int j = k; j < nR; ++j) {
                    double aki = weightedJacobian[j][permutation[i]];
                    norm2 += aki * aki;
                }
                if (Double.isInfinite(norm2) || Double.isNaN(norm2)) {
                    throw new ConvergenceException(LocalizedFormats.UNABLE_TO_PERFORM_QR_DECOMPOSITION_ON_JACOBIAN,
                                                   nR, nC);
                }
                if (norm2 > ak2) {
                    nextColumn = i;
                    ak2        = norm2;
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.analysis.function.Gaussian$Parametric

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.