Package org.apache.commons.math3.analysis

Examples of org.apache.commons.math3.analysis.UnivariateFunction


@Deprecated
public class UnivariateMultiStartOptimizerTest {

    @Test
    public void testSinMin() {
        UnivariateFunction f = new Sin();
        UnivariateOptimizer underlying = new BrentOptimizer(1e-10, 1e-14);
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(44428400075l);
        UnivariateMultiStartOptimizer<UnivariateFunction> optimizer =
            new UnivariateMultiStartOptimizer<UnivariateFunction>(underlying, 10, g);
        optimizer.optimize(300, f, GoalType.MINIMIZE, -100.0, 100.0);
        UnivariatePointValuePair[] optima = optimizer.getOptima();
        for (int i = 1; i < optima.length; ++i) {
            double d = (optima[i].getPoint() - optima[i-1].getPoint()) / (2 * FastMath.PI);
            Assert.assertTrue(FastMath.abs(d - FastMath.rint(d)) < 1.0e-8);
            Assert.assertEquals(-1.0, f.value(optima[i].getPoint()), 1.0e-10);
            Assert.assertEquals(f.value(optima[i].getPoint()), optima[i].getValue(), 1.0e-10);
        }
        Assert.assertTrue(optimizer.getEvaluations() > 200);
        Assert.assertTrue(optimizer.getEvaluations() < 300);
    }
View Full Code Here


    @Test
    public void testQuinticMin() {
        // The quintic function has zeros at 0, +-0.5 and +-1.
        // The function has extrema (first derivative is zero) at 0.27195613 and 0.82221643,
        UnivariateFunction f = new QuinticFunction();
        UnivariateOptimizer underlying = new BrentOptimizer(1e-9, 1e-14);
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(4312000053L);
        UnivariateMultiStartOptimizer<UnivariateFunction> optimizer =
            new UnivariateMultiStartOptimizer<UnivariateFunction>(underlying, 5, g);

        UnivariatePointValuePair optimum
            = optimizer.optimize(300, f, GoalType.MINIMIZE, -0.3, -0.2);
        Assert.assertEquals(-0.2719561293, optimum.getPoint(), 1e-9);
        Assert.assertEquals(-0.0443342695, optimum.getValue(), 1e-9);

        UnivariatePointValuePair[] optima = optimizer.getOptima();
        for (int i = 0; i < optima.length; ++i) {
            Assert.assertEquals(f.value(optima[i].getPoint()), optima[i].getValue(), 1e-9);
        }
        Assert.assertTrue(optimizer.getEvaluations() >= 50);
        Assert.assertTrue(optimizer.getEvaluations() <= 100);
    }
View Full Code Here

        Assert.assertTrue(optimizer.getEvaluations() <= 100);
    }

    @Test
    public void testBadFunction() {
        UnivariateFunction f = new UnivariateFunction() {
                public double value(double x) {
                    if (x < 0) {
                        throw new LocalException();
                    }
                    return 0;
View Full Code Here

        {
        double tolerance = 1e-15;
        double x[] = { 0.0, 0.5, 1.0 };
        double y[] = { 0.0, 0.5, 1.0 };
        UnivariateInterpolator i = new SplineInterpolator();
        UnivariateFunction f = i.interpolate(x, y);
        verifyInterpolation(f, x, y);
        verifyConsistency((PolynomialSplineFunction) f, x);

        // Verify coefficients using analytical values
        PolynomialFunction polynomials[] = ((PolynomialSplineFunction) f).getPolynomials();
        double target[] = {y[0], 1d};
        TestUtils.assertEquals(polynomials[0].getCoefficients(), target, coefficientTolerance);
        target = new double[]{y[1], 1d};
        TestUtils.assertEquals(polynomials[1].getCoefficients(), target, coefficientTolerance);

        // Check interpolation
        Assert.assertEquals(0.0,f.value(0.0), tolerance);
        Assert.assertEquals(0.4,f.value(0.4), tolerance);
        Assert.assertEquals(1.0,f.value(1.0), tolerance);
    }
View Full Code Here

        {
        double tolerance = 1e-15;
        double x[] = { 0.0, 0.5, 1.0, 1.5 };
        double y[] = { 0.0, 0.5, 1.0, 1.5 };
        UnivariateInterpolator i = new SplineInterpolator();
        UnivariateFunction f = i.interpolate(x, y);
        verifyInterpolation(f, x, y);

        // Verify coefficients using analytical values
        PolynomialFunction polynomials[] = ((PolynomialSplineFunction) f).getPolynomials();
        double target[] = {y[0], 1d};
        TestUtils.assertEquals(polynomials[0].getCoefficients(), target, coefficientTolerance);
        target = new double[]{y[1], 1d};
        TestUtils.assertEquals(polynomials[1].getCoefficients(), target, coefficientTolerance);
        target = new double[]{y[2], 1d};
        TestUtils.assertEquals(polynomials[2].getCoefficients(), target, coefficientTolerance);

        // Check interpolation
        Assert.assertEquals(0,f.value(0), tolerance);
        Assert.assertEquals(1.4,f.value(1.4), tolerance);
        Assert.assertEquals(1.5,f.value(1.5), tolerance);
    }
View Full Code Here

    @Test
    public void testSinZero() {
        // The sinus function is behaved well around the root at pi. The second
        // order derivative is zero, which means linear approximating methods
        // still converge quadratically.
        UnivariateFunction f = new Sin();
        double result;
        UnivariateSolver solver = getSolver();

        result = solver.solve(100, f, 3, 4);
        //System.out.println(
View Full Code Here

        // The other roots are less well to find, in particular the root at 1,
        // because the function grows fast for x>1.
        // The function has extrema (first derivative is zero) at 0.27195613
        // and 0.82221643, intervals containing these values are harder for
        // the solvers.
        UnivariateFunction f = new QuinticFunction();
        double result;
        UnivariateSolver solver = getSolver();
        double atol = solver.getAbsoluteAccuracy();
        int[] counts = getQuinticEvalCounts();
View Full Code Here

    @Test
    public void testInterpolateLinear() {
        double x[] = { 0.0, 0.5, 1.0 };
        double y[] = { 0.0, 0.5, 0.0 };
        UnivariateInterpolator i = new SplineInterpolator();
        UnivariateFunction f = i.interpolate(x, y);
        verifyInterpolation(f, x, y);
        verifyConsistency((PolynomialSplineFunction) f, x);

        // Verify coefficients using analytical values
        PolynomialFunction polynomials[] = ((PolynomialSplineFunction) f).getPolynomials();
View Full Code Here

        }
    }

    @Test
    public void testRootEndpoints() {
        UnivariateFunction f = new XMinus5Function();
        UnivariateSolver solver = getSolver();

        // End-point is root. This should be a special case in the solver, and
        // the initial end-point should be returned exactly.
        double result = solver.solve(100, f, 5.0, 6.0);
View Full Code Here

        Assert.assertEquals(5.0, result, 0.0);
    }

    @Test
    public void testBadEndpoints() {
        UnivariateFunction f = new Sin();
        UnivariateSolver solver = getSolver();
        try // bad interval
            solver.solve(100, f, 1, -1);
            Assert.fail("Expecting NumberIsTooLargeException - bad interval");
        } catch (NumberIsTooLargeException ex) {
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.analysis.UnivariateFunction

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.