Package org.apache.commons.math3.analysis

Examples of org.apache.commons.math3.analysis.UnivariateFunction


                return false;
            }
            final int    n = FastMath.max(1, (int) FastMath.ceil(FastMath.abs(dt) / maxCheckInterval));
            final double h = dt / n;

            final UnivariateFunction f = new UnivariateFunction() {
                public double value(final double t) throws LocalMaxCountExceededException {
                    try {
                        interpolator.setInterpolatedTime(t);
                        return handler.g(t, getCompleteState(interpolator));
                    } catch (MaxCountExceededException mcee) {
                        throw new LocalMaxCountExceededException(mcee);
                    }
                }
            };

            double ta = t0;
            double ga = g0;
            for (int i = 0; i < n; ++i) {

                // evaluate handler value at the end of the substep
                final double tb = t0 + (i + 1) * h;
                interpolator.setInterpolatedTime(tb);
                final double gb = handler.g(tb, getCompleteState(interpolator));

                // check events occurrence
                if (g0Positive ^ (gb >= 0)) {
                    // there is a sign change: an event is expected during this step

                    // variation direction, with respect to the integration direction
                    increasing = gb >= ga;

                    // find the event time making sure we select a solution just at or past the exact root
                    final double root;
                    if (solver instanceof BracketedUnivariateSolver<?>) {
                        @SuppressWarnings("unchecked")
                        BracketedUnivariateSolver<UnivariateFunction> bracketing =
                                (BracketedUnivariateSolver<UnivariateFunction>) solver;
                        root = forward ?
                               bracketing.solve(maxIterationCount, f, ta, tb, AllowedSolution.RIGHT_SIDE) :
                               bracketing.solve(maxIterationCount, f, tb, ta, AllowedSolution.LEFT_SIDE);
                    } else {
                        final double baseRoot = forward ?
                                                solver.solve(maxIterationCount, f, ta, tb) :
                                                solver.solve(maxIterationCount, f, tb, ta);
                        final int remainingEval = maxIterationCount - solver.getEvaluations();
                        BracketedUnivariateSolver<UnivariateFunction> bracketing =
                                new PegasusSolver(solver.getRelativeAccuracy(), solver.getAbsoluteAccuracy());
                        root = forward ?
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, ta, tb, AllowedSolution.RIGHT_SIDE) :
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, tb, ta, AllowedSolution.LEFT_SIDE);
                    }

                    if ((!Double.isNaN(previousEventTime)) &&
                        (FastMath.abs(root - ta) <= convergence) &&
                        (FastMath.abs(root - previousEventTime) <= convergence)) {
                        // we have either found nothing or found (again ?) a past event,
                        // retry the substep excluding this value, and taking care to have the
                        // required sign in case the g function is noisy around its zero and
                        // crosses the axis several times
                        do {
                            ta = forward ? ta + convergence : ta - convergence;
                            ga = f.value(ta);
                        } while ((g0Positive ^ (ga >= 0)) && (forward ^ (ta >= tb)));
                        --i;
                    } else if (Double.isNaN(previousEventTime) ||
                               (FastMath.abs(previousEventTime - root) > convergence)) {
                        pendingEventTime = root;
View Full Code Here


            y[index] = yval[i];
        }

        MathArrays.sortInPlace(x, y);

        final UnivariateFunction f = interpolator.interpolate(x, y);
        return new UnivariateFunction() {
            public double value(final double x) throws MathIllegalArgumentException {
                return f.value(MathUtils.reduce(x, period, offset));
            }
        };
    }
View Full Code Here

        }

        // Partial derivatives with respect to x at the grid knots
        final double[][] dFdX = new double[xLen][yLen];
        for (int j = 0; j < yLen; j++) {
            final UnivariateFunction f = ySplineX[j].derivative();
            for (int i = 0; i < xLen; i++) {
                dFdX[i][j] = f.value(xval[i]);
            }
        }

        // Partial derivatives with respect to y at the grid knots
        final double[][] dFdY = new double[xLen][yLen];
        for (int i = 0; i < xLen; i++) {
            final UnivariateFunction f = xSplineY[i].derivative();
            for (int j = 0; j < yLen; j++) {
                dFdY[i][j] = f.value(yval[j]);
            }
        }

        // Cross partial derivatives
        final double[][] d2FdXdY = new double[xLen][yLen];
View Full Code Here

     * is exceeded.
     */
    private double stage(final int n)
        throws TooManyEvaluationsException {
        // Function to be integrated is stored in the base class.
        final UnivariateFunction f = new UnivariateFunction() {
                public double value(double x)
                    throws MathIllegalArgumentException, TooManyEvaluationsException {
                    return computeObjectiveValue(x);
                }
            };
View Full Code Here

                // We have found an optimum.
                return current;
            }

            // Find the optimal step in the search direction.
            final UnivariateFunction lsf = new LineSearchFunction(searchDirection);
            final double uB = findUpperBound(lsf, 0, initialStep);
            // XXX Last parameters is set to a value close to zero in order to
            // work around the divergence problem in the "testCircleFitting"
            // unit test (see MATH-439).
            final double step = solver.solve(maxEval, lsf, 0, uB, 1e-15);
View Full Code Here

                    upperBound *= 2.0;
                }
            }
        }

        final UnivariateFunction toSolve = new UnivariateFunction() {

            public double value(final double x) {
                return cumulativeProbability(x) - p;
            }
        };
View Full Code Here

        //   y = (x - mu) / (sqrt(2) *  sigma)
        // such that the integrand
        //   N(x, mu, sigma)
        // is transformed to
        //   f(y) * exp(-y^2)
        final UnivariateFunction f = new UnivariateFunction() {
                public double value(double y) {
                    return oneOverSqrtPi; // Constant function.
                }
            };

View Full Code Here

        //   y = (x - mu) / (sqrt(2) *  sigma)
        // such that the integrand
        //   x * N(x, mu, sigma)
        // is transformed to
        //   f(y) * exp(-y^2)
        final UnivariateFunction f = new UnivariateFunction() {
                public double value(double y) {
                    return oneOverSqrtPi * (sqrtTwo * sigma * y + mu);
                }
            };

View Full Code Here

        //   y = (x - mu) / (sqrt(2) *  sigma)
        // such that the integrand
        //   (x - mu)^2 * N(x, mu, sigma)
        // is transformed to
        //   f(y) * exp(-y^2)
        final UnivariateFunction f = new UnivariateFunction() {
                public double value(double y) {
                    return twoOverSqrtPi * sigma2 * y * y;
                }
            };

View Full Code Here

public class LegendreHighPrecisionTest {
    private static GaussIntegratorFactory factory = new GaussIntegratorFactory();

    @Test
    public void testCos() {
        final UnivariateFunction cos = new Cos();

        final GaussIntegrator integrator = factory.legendreHighPrecision(7, 0, Math.PI / 2);
        final double s = integrator.integrate(cos);
        // System.out.println("s=" + s + " e=" + 1);
        Assert.assertEquals(1, s, Math.ulp(1d));
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.analysis.UnivariateFunction

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.