Package org.apache.commons.math.stat.descriptive

Examples of org.apache.commons.math.stat.descriptive.SummaryStatistics


    }

    public void testTwoSampleTHeterscedastic() throws Exception {
        double[] sample1 = { 7d, -4d, 18d, 17d, -3d, -5d, 1d, 10d, 11d, -2d };
        double[] sample2 = { -1d, 12d, -1d, -3d, 3d, -5d, 5d, 2d, -11d, -1d, -3d };
        SummaryStatistics sampleStats1 = new SummaryStatistics();
        for (int i = 0; i < sample1.length; i++) {
            sampleStats1.addValue(sample1[i]);
        }
        SummaryStatistics sampleStats2 = new SummaryStatistics();
        for (int i = 0; i < sample2.length; i++) {
            sampleStats2.addValue(sample2[i]);
        }

        // Target comparison values computed using R version 1.8.1 (Linux version)
        assertEquals("two sample heteroscedastic t stat", 1.60371728768,
                testStatistic.t(sample1, sample2), 1E-10);
View Full Code Here


        double next = 0.0;
        double tolerance = 0.1;
        vs.computeDistribution();
        assertTrue("empirical distribution property",
            vs.getEmpiricalDistribution() != null);
        SummaryStatistics stats = new SummaryStatistics();
        for (int i = 1; i < 1000; i++) {
            next = vs.getNext();
            stats.addValue(next);
        }
        assertEquals("mean", 5.069831575018909, stats.getMean(), tolerance);
        assertEquals
         ("std dev", 1.0173699343977738, stats.getStandardDeviation(),
            tolerance);

        vs.computeDistribution(500);
        stats = new SummaryStatistics();
        for (int i = 1; i < 1000; i++) {
            next = vs.getNext();
            stats.addValue(next);
        }
        assertEquals("mean", 5.069831575018909, stats.getMean(), tolerance);
        assertEquals
         ("std dev", 1.0173699343977738, stats.getStandardDeviation(),
            tolerance);

    }
View Full Code Here

        }
    }

    private void tstGen(double tolerance)throws Exception {
        empiricalDistribution.load(url);
        SummaryStatistics stats = new SummaryStatistics();
        for (int i = 1; i < 1000; i++) {
            stats.addValue(empiricalDistribution.getNextValue());
        }
        assertEquals("mean", stats.getMean(),5.069831575018909,tolerance);
        assertEquals
         ("std dev", stats.getStandardDeviation(),1.0173699343977738,tolerance);
    }
View Full Code Here

         ("std dev", stats.getStandardDeviation(),1.0173699343977738,tolerance);
    }

    private void tstDoubleGen(double tolerance)throws Exception {
        empiricalDistribution2.load(dataArray);
        SummaryStatistics stats = new SummaryStatistics();
        for (int i = 1; i < 1000; i++) {
            stats.addValue(empiricalDistribution2.getNextValue());
        }
        assertEquals("mean", stats.getMean(),5.069831575018909,tolerance);
        assertEquals
         ("std dev", stats.getStandardDeviation(),1.0173699343977738,tolerance);
    }
View Full Code Here

        }
    }
    public void testTwoSampleTHomoscedastic() throws Exception {
        double[] sample1 ={2, 4, 6, 8, 10, 97};
        double[] sample2 = {4, 6, 8, 10, 16};
        SummaryStatistics sampleStats1 = new SummaryStatistics();
        for (int i = 0; i < sample1.length; i++) {
            sampleStats1.addValue(sample1[i]);
        }
        SummaryStatistics sampleStats2 = new SummaryStatistics();
        for (int i = 0; i < sample2.length; i++) {
            sampleStats2.addValue(sample2[i]);
        }

        // Target comparison values computed using R version 1.8.1 (Linux version)
        assertEquals("two sample homoscedastic t stat", 0.73096310086,
              testStatistic.homoscedasticT(sample1, sample2), 10E-11);
View Full Code Here

    public void testOneSampleT() throws Exception {
        double[] observed =
            {93.0, 103.0, 95.0, 101.0, 91.0, 105.0, 96.0, 94.0, 101.088.0, 98.0, 94.0, 101.0, 92.0, 95.0 };
        double mu = 100.0;
        SummaryStatistics sampleStats = null;
        sampleStats = new SummaryStatistics();
        for (int i = 0; i < observed.length; i++) {
            sampleStats.addValue(observed[i]);
        }

        // Target comparison values computed using R version 1.8.1 (Linux version)
        assertEquals("t statistic",  -2.81976445346,
                TestUtils.t(mu, observed), 10E-10);
View Full Code Here

    }

    public void testOneSampleTTest() throws Exception {
        double[] oneSidedP =
            {2d, 0d, 6d, 6d, 3d, 3d, 2d, 3d, -6d, 6d, 6d, 6d, 3d, 0d, 1d, 1d, 0d, 2d, 3d, 3d };
        SummaryStatistics oneSidedPStats = new SummaryStatistics();
        for (int i = 0; i < oneSidedP.length; i++) {
            oneSidedPStats.addValue(oneSidedP[i]);
        }
        // Target comparison values computed using R version 1.8.1 (Linux version)
        assertEquals("one sample t stat", 3.86485535541,
                TestUtils.t(0d, oneSidedP), 10E-10);
        assertEquals("one sample t stat", 3.86485535541,
View Full Code Here

    }

    public void testTwoSampleTHeterscedastic() throws Exception {
        double[] sample1 = { 7d, -4d, 18d, 17d, -3d, -5d, 1d, 10d, 11d, -2d };
        double[] sample2 = { -1d, 12d, -1d, -3d, 3d, -5d, 5d, 2d, -11d, -1d, -3d };
        SummaryStatistics sampleStats1 = new SummaryStatistics();
        for (int i = 0; i < sample1.length; i++) {
            sampleStats1.addValue(sample1[i]);
        }
        SummaryStatistics sampleStats2 = new SummaryStatistics();
        for (int i = 0; i < sample2.length; i++) {
            sampleStats2.addValue(sample2[i]);
        }

        // Target comparison values computed using R version 1.8.1 (Linux version)
        assertEquals("two sample heteroscedastic t stat", 1.60371728768,
                TestUtils.t(sample1, sample2), 1E-10);
View Full Code Here

        }
    }
    public void testTwoSampleTHomoscedastic() throws Exception {
        double[] sample1 ={2, 4, 6, 8, 10, 97};
        double[] sample2 = {4, 6, 8, 10, 16};
        SummaryStatistics sampleStats1 = new SummaryStatistics();
        for (int i = 0; i < sample1.length; i++) {
            sampleStats1.addValue(sample1[i]);
        }
        SummaryStatistics sampleStats2 = new SummaryStatistics();
        for (int i = 0; i < sample2.length; i++) {
            sampleStats2.addValue(sample2[i]);
        }

        // Target comparison values computed using R version 1.8.1 (Linux version)
        assertEquals("two sample homoscedastic t stat", 0.73096310086,
                TestUtils.homoscedasticT(sample1, sample2), 10E-11);
View Full Code Here

public class Well1024aTest {

    @Test
    public void testGaussian() {
        Well1024a mt = new Well1024a(42853252100l);
        SummaryStatistics sample = new SummaryStatistics();
        for (int i = 0; i < 10000; ++i) {
            sample.addValue(mt.nextGaussian());
        }
        Assert.assertEquals(0.0, sample.getMean(), 0.004);
        Assert.assertEquals(1.0, sample.getStandardDeviation(), 0.003);
    }
View Full Code Here

TOP

Related Classes of org.apache.commons.math.stat.descriptive.SummaryStatistics

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.