Package org.apache.commons.math.stat.descriptive

Examples of org.apache.commons.math.stat.descriptive.SummaryStatistics


        }
    }
    public void testTwoSampleTHomoscedastic() throws Exception {
        double[] sample1 ={2, 4, 6, 8, 10, 97};
        double[] sample2 = {4, 6, 8, 10, 16};
        SummaryStatistics sampleStats1 = new SummaryStatistics();
        for (int i = 0; i < sample1.length; i++) {
            sampleStats1.addValue(sample1[i]);
        }
        SummaryStatistics sampleStats2 = new SummaryStatistics();
        for (int i = 0; i < sample2.length; i++) {
            sampleStats2.addValue(sample2[i]);
        }

        // Target comparison values computed using R version 1.8.1 (Linux version)
        assertEquals("two sample homoscedastic t stat", 0.73096310086,
              testStatistic.homoscedasticT(sample1, sample2), 10E-11);
View Full Code Here


    public void testOneSampleT() throws Exception {
        double[] observed =
            {93.0, 103.0, 95.0, 101.0, 91.0, 105.0, 96.0, 94.0, 101.088.0, 98.0, 94.0, 101.0, 92.0, 95.0 };
        double mu = 100.0;
        SummaryStatistics sampleStats = null;
        sampleStats = new SummaryStatistics();
        for (int i = 0; i < observed.length; i++) {
            sampleStats.addValue(observed[i]);
        }

        // Target comparison values computed using R version 1.8.1 (Linux version)
        assertEquals("t statistic",  -2.81976445346,
                TestUtils.t(mu, observed), 10E-10);
View Full Code Here

        }
    }

    private void tstGen(double tolerance)throws Exception {
        empiricalDistribution.load(url);
        SummaryStatistics stats = new SummaryStatistics();
        for (int i = 1; i < 1000; i++) {
            stats.addValue(empiricalDistribution.getNextValue());
        }
        assertEquals("mean", stats.getMean(),5.069831575018909,tolerance);
        assertEquals
         ("std dev", stats.getStandardDeviation(),1.0173699343977738,tolerance);
    }
View Full Code Here

         ("std dev", stats.getStandardDeviation(),1.0173699343977738,tolerance);
    }

    private void tstDoubleGen(double tolerance)throws Exception {
        empiricalDistribution2.load(dataArray);
        SummaryStatistics stats = new SummaryStatistics();
        for (int i = 1; i < 1000; i++) {
            stats.addValue(empiricalDistribution2.getNextValue());
        }
        assertEquals("mean", stats.getMean(),5.069831575018909,tolerance);
        assertEquals
         ("std dev", stats.getStandardDeviation(),1.0173699343977738,tolerance);
    }
View Full Code Here

        // Initialize binStats ArrayList
        if (!binStats.isEmpty()) {
            binStats.clear();
        }
        for (int i = 0; i < binCount; i++) {
            SummaryStatistics stats = new SummaryStatistics();
            binStats.add(i,stats);
        }

        // Filling data in binStats Array
        DataAdapterFactory aFactory = new DataAdapterFactory();
View Full Code Here

        double x = FastMath.random();

        // Use this to select the bin and generate a Gaussian within the bin
        for (int i = 0; i < binCount; i++) {
           if (x <= upperBounds[i]) {
               SummaryStatistics stats = binStats.get(i);
               if (stats.getN() > 0) {
                   if (stats.getStandardDeviation() > 0) {  // more than one obs
                        return randomData.nextGaussian
                            (stats.getMean(),stats.getStandardDeviation());
                   } else {
                       return stats.getMean(); // only one obs in bin
                   }
               }
           }
        }
        throw new MathRuntimeException(LocalizedFormats.NO_BIN_SELECTED);
View Full Code Here

        public void computeBinStats() throws IOException {
            String str = null;
            double val = 0.0d;
            while ((str = inputStream.readLine()) != null) {
                val = Double.parseDouble(str);
                SummaryStatistics stats = binStats.get(findBin(val));
                stats.addValue(val);
            }

            inputStream.close();
            inputStream = null;
        }
View Full Code Here

        /** {@inheritDoc} */
        @Override
        public void computeStats() throws IOException {
            String str = null;
            double val = 0.0;
            sampleStats = new SummaryStatistics();
            while ((str = inputStream.readLine()) != null) {
                val = Double.valueOf(str).doubleValue();
                sampleStats.addValue(val);
            }
            inputStream.close();
View Full Code Here

        }

        /** {@inheritDoc} */
        @Override
        public void computeStats() throws IOException {
            sampleStats = new SummaryStatistics();
            for (int i = 0; i < inputArray.length; i++) {
                sampleStats.addValue(inputArray[i]);
            }
        }
View Full Code Here

        /** {@inheritDoc} */
        @Override
        public void computeBinStats() throws IOException {
            for (int i = 0; i < inputArray.length; i++) {
                SummaryStatistics stats =
                    binStats.get(findBin(inputArray[i]));
                stats.addValue(inputArray[i]);
            }
        }
View Full Code Here

TOP

Related Classes of org.apache.commons.math.stat.descriptive.SummaryStatistics

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.