Examples of MemoryTreebank


Examples of edu.stanford.nlp.trees.MemoryTreebank

    op.display();
    op.tlpParams.display();

    // setup tree transforms
    Treebank trainTreebank = op.tlpParams.memoryTreebank();
    MemoryTreebank testTreebank = op.tlpParams.testMemoryTreebank();
    // Treebank blippTreebank = ((EnglishTreebankParserParams) tlpParams).diskTreebank();
    // String blippPath = "/afs/ir.stanford.edu/data/linguistic-data/BLLIP-WSJ/";
    // blippTreebank.loadPath(blippPath, "", true);

    Timing.startTime();
    System.err.print("Reading trees...");
    testTreebank.loadPath(path, new NumberRangeFileFilter(testLow, testHigh, true));
    if (op.testOptions.increasingLength) {
      Collections.sort(testTreebank, new TreeLengthComparator());
    }

    trainTreebank.loadPath(path, new NumberRangeFileFilter(trainLow, trainHigh, true));
    Timing.tick("done.");

    System.err.print("Binarizing trees...");
    TreeAnnotatorAndBinarizer binarizer;
    if (!op.trainOptions.leftToRight) {
      binarizer = new TreeAnnotatorAndBinarizer(op.tlpParams, op.forceCNF, !op.trainOptions.outsideFactor(), true, op);
    } else {
      binarizer = new TreeAnnotatorAndBinarizer(op.tlpParams.headFinder(), new LeftHeadFinder(), op.tlpParams, op.forceCNF, !op.trainOptions.outsideFactor(), true, op);
    }

    CollinsPuncTransformer collinsPuncTransformer = null;
    if (op.trainOptions.collinsPunc) {
      collinsPuncTransformer = new CollinsPuncTransformer(tlp);
    }
    TreeTransformer debinarizer = new Debinarizer(op.forceCNF);
    List<Tree> binaryTrainTrees = new ArrayList<Tree>();

    if (op.trainOptions.selectiveSplit) {
      op.trainOptions.splitters = ParentAnnotationStats.getSplitCategories(trainTreebank, op.trainOptions.tagSelectiveSplit, 0, op.trainOptions.selectiveSplitCutOff, op.trainOptions.tagSelectiveSplitCutOff, op.tlpParams.treebankLanguagePack());
      if (op.trainOptions.deleteSplitters != null) {
        List<String> deleted = new ArrayList<String>();
        for (String del : op.trainOptions.deleteSplitters) {
          String baseDel = tlp.basicCategory(del);
          boolean checkBasic = del.equals(baseDel);
          for (Iterator<String> it = op.trainOptions.splitters.iterator(); it.hasNext(); ) {
            String elem = it.next();
            String baseElem = tlp.basicCategory(elem);
            boolean delStr = checkBasic && baseElem.equals(baseDel) ||
              elem.equals(del);
            if (delStr) {
              it.remove();
              deleted.add(elem);
            }
          }
        }
        System.err.println("Removed from vertical splitters: " + deleted);
      }
    }
    if (op.trainOptions.selectivePostSplit) {
      TreeTransformer myTransformer = new TreeAnnotator(op.tlpParams.headFinder(), op.tlpParams, op);
      Treebank annotatedTB = trainTreebank.transform(myTransformer);
      op.trainOptions.postSplitters = ParentAnnotationStats.getSplitCategories(annotatedTB, true, 0, op.trainOptions.selectivePostSplitCutOff, op.trainOptions.tagSelectivePostSplitCutOff, op.tlpParams.treebankLanguagePack());
    }

    if (op.trainOptions.hSelSplit) {
      binarizer.setDoSelectiveSplit(false);
      for (Tree tree : trainTreebank) {
        if (op.trainOptions.collinsPunc) {
          tree = collinsPuncTransformer.transformTree(tree);
        }
        //tree.pennPrint(tlpParams.pw());
        tree = binarizer.transformTree(tree);
        //binaryTrainTrees.add(tree);
      }
      binarizer.setDoSelectiveSplit(true);
    }
    for (Tree tree : trainTreebank) {
      if (op.trainOptions.collinsPunc) {
        tree = collinsPuncTransformer.transformTree(tree);
      }
      tree = binarizer.transformTree(tree);
      binaryTrainTrees.add(tree);
    }
    if (op.testOptions.verbose) {
      binarizer.dumpStats();
    }

    List<Tree> binaryTestTrees = new ArrayList<Tree>();
    for (Tree tree : testTreebank) {
      if (op.trainOptions.collinsPunc) {
        tree = collinsPuncTransformer.transformTree(tree);
      }
      tree = binarizer.transformTree(tree);
      binaryTestTrees.add(tree);
    }
    Timing.tick("done.")// binarization
    BinaryGrammar bg = null;
    UnaryGrammar ug = null;
    DependencyGrammar dg = null;
    // DependencyGrammar dgBLIPP = null;
    Lexicon lex = null;
    Index<String> stateIndex = new HashIndex<String>();

    // extract grammars
    Extractor<Pair<UnaryGrammar,BinaryGrammar>> bgExtractor = new BinaryGrammarExtractor(op, stateIndex);
    //Extractor bgExtractor = new SmoothedBinaryGrammarExtractor();//new BinaryGrammarExtractor();
    // Extractor lexExtractor = new LexiconExtractor();

    //Extractor dgExtractor = new DependencyMemGrammarExtractor();

    if (op.doPCFG) {
      System.err.print("Extracting PCFG...");
      Pair<UnaryGrammar, BinaryGrammar> bgug = null;
      if (op.trainOptions.cheatPCFG) {
        List<Tree> allTrees = new ArrayList<Tree>(binaryTrainTrees);
        allTrees.addAll(binaryTestTrees);
        bgug = bgExtractor.extract(allTrees);
      } else {
        bgug = bgExtractor.extract(binaryTrainTrees);
      }
      bg = bgug.second;
      bg.splitRules();
      ug = bgug.first;
      ug.purgeRules();
      Timing.tick("done.");
    }
    System.err.print("Extracting Lexicon...");
    Index<String> wordIndex = new HashIndex<String>();
    Index<String> tagIndex = new HashIndex<String>();
    lex = op.tlpParams.lex(op, wordIndex, tagIndex);
    lex.initializeTraining(binaryTrainTrees.size());
    lex.train(binaryTrainTrees);
    lex.finishTraining();
    Timing.tick("done.");

    if (op.doDep) {
      System.err.print("Extracting Dependencies...");
      binaryTrainTrees.clear();
      Extractor<DependencyGrammar> dgExtractor = new MLEDependencyGrammarExtractor(op, wordIndex, tagIndex);
      // dgBLIPP = (DependencyGrammar) dgExtractor.extract(new ConcatenationIterator(trainTreebank.iterator(),blippTreebank.iterator()),new TransformTreeDependency(tlpParams,true));

      // DependencyGrammar dg1 = dgExtractor.extract(trainTreebank.iterator(), new TransformTreeDependency(op.tlpParams, true));
      //dgBLIPP=(DependencyGrammar)dgExtractor.extract(blippTreebank.iterator(),new TransformTreeDependency(tlpParams));

      //dg = (DependencyGrammar) dgExtractor.extract(new ConcatenationIterator(trainTreebank.iterator(),blippTreebank.iterator()),new TransformTreeDependency(tlpParams));
      // dg=new DependencyGrammarCombination(dg1,dgBLIPP,2);
      dg = dgExtractor.extract(binaryTrainTrees); //uses information whether the words are known or not, discards unknown words
      Timing.tick("done.");
      //System.out.print("Extracting Unknown Word Model...");
      //UnknownWordModel uwm = (UnknownWordModel)uwmExtractor.extract(binaryTrainTrees);
      //Timing.tick("done.");
      System.out.print("Tuning Dependency Model...");
      dg.tune(binaryTestTrees);
      //System.out.println("TUNE DEPS: "+tuneDeps);
      Timing.tick("done.");
    }

    BinaryGrammar boundBG = bg;
    UnaryGrammar boundUG = ug;

    GrammarProjection gp = new NullGrammarProjection(bg, ug);

    // serialization
    if (serializeFile != null) {
      System.err.print("Serializing parser...");
      LexicalizedParser parser = new LexicalizedParser(lex, bg, ug, dg, stateIndex, wordIndex, tagIndex, op);
      parser.saveParserToSerialized(serializeFile);
      Timing.tick("done.");
    }

    // test: pcfg-parse and output

    ExhaustivePCFGParser parser = null;
    if (op.doPCFG) {
      parser = new ExhaustivePCFGParser(boundBG, boundUG, lex, op, stateIndex, wordIndex, tagIndex);
    }


    ExhaustiveDependencyParser dparser = ((op.doDep && ! op.testOptions.useFastFactored) ? new ExhaustiveDependencyParser(dg, lex, op, wordIndex, tagIndex) : null);

    Scorer scorer = (op.doPCFG ? new TwinScorer(new ProjectionScorer(parser, gp, op), dparser) : null);
    //Scorer scorer = parser;
    BiLexPCFGParser bparser = null;
    if (op.doPCFG && op.doDep) {
      bparser = (op.testOptions.useN5) ? new BiLexPCFGParser.N5BiLexPCFGParser(scorer, parser, dparser, bg, ug, dg, lex, op, gp, stateIndex, wordIndex, tagIndex) : new BiLexPCFGParser(scorer, parser, dparser, bg, ug, dg, lex, op, gp, stateIndex, wordIndex, tagIndex);
    }

    Evalb pcfgPE = new Evalb("pcfg  PE", true);
    Evalb comboPE = new Evalb("combo PE", true);
    AbstractEval pcfgCB = new Evalb.CBEval("pcfg  CB", true);

    AbstractEval pcfgTE = new TaggingEval("pcfg  TE");
    AbstractEval comboTE = new TaggingEval("combo TE");
    AbstractEval pcfgTEnoPunct = new TaggingEval("pcfg nopunct TE");
    AbstractEval comboTEnoPunct = new TaggingEval("combo nopunct TE");
    AbstractEval depTE = new TaggingEval("depnd TE");

    AbstractEval depDE = new UnlabeledAttachmentEval("depnd DE", true, null, tlp.punctuationWordRejectFilter());
    AbstractEval comboDE = new UnlabeledAttachmentEval("combo DE", true, null, tlp.punctuationWordRejectFilter());

    if (op.testOptions.evalb) {
      EvalbFormatWriter.initEVALBfiles(op.tlpParams);
    }

    // int[] countByLength = new int[op.testOptions.maxLength+1];

    // Use a reflection ruse, so one can run this without needing the
    // tagger.  Using a function rather than a MaxentTagger means we
    // can distribute a version of the parser that doesn't include the
    // entire tagger.
    Function<List<? extends HasWord>,ArrayList<TaggedWord>> tagger = null;
    if (op.testOptions.preTag) {
      try {
        Class[] argsClass = { String.class };
        Object[] arguments = new Object[]{op.testOptions.taggerSerializedFile};
        tagger = (Function<List<? extends HasWord>,ArrayList<TaggedWord>>) Class.forName("edu.stanford.nlp.tagger.maxent.MaxentTagger").getConstructor(argsClass).newInstance(arguments);
      } catch (Exception e) {
        System.err.println(e);
        System.err.println("Warning: No pretagging of sentences will be done.");
      }
    }

    for (int tNum = 0, ttSize = testTreebank.size(); tNum < ttSize; tNum++) {
      Tree tree = testTreebank.get(tNum);
      int testTreeLen = tree.yield().size();
      if (testTreeLen > op.testOptions.maxLength) {
        continue;
      }
      Tree binaryTree = binaryTestTrees.get(tNum);
View Full Code Here

Examples of edu.stanford.nlp.trees.MemoryTreebank

  String[] TEST_TREES = { "(ROOT (S (S (NP (PRP I)) (VP (VBP like) (NP (JJ big) (NNS butts)))) (CC and) (S (NP (PRP I)) (VP (MD can) (RB not) (VP (VB lie)))) (. .)))",
                          "(ROOT (S (NP (NP (RB Not) (PDT all) (DT those)) (SBAR (WHNP (WP who)) (S (VP (VBD wrote))))) (VP (VBP oppose) (NP (DT the) (NNS changes))) (. .)))",
                          "(ROOT (S (NP (NP (DT The) (NNS anthers)) (PP (IN in) (NP (DT these) (NNS plants)))) (VP (VBP are) (ADJP (JJ difficult) (SBAR (S (VP (TO to) (VP (VB clip) (PRT (RP off)))))))) (. .)))" };

  public List<Tree> buildTestTreebank() {
    MemoryTreebank treebank = new MemoryTreebank();

    for (String text : TEST_TREES) {
      Tree tree = Tree.valueOf(text);
      treebank.add(tree);
    }

    List<Tree> binarizedTrees = ShiftReduceParser.binarizeTreebank(treebank, new Options());
    return binarizedTrees;
  }
View Full Code Here

Examples of edu.stanford.nlp.trees.MemoryTreebank

    return new DiskTreebank(treeReaderFactory(), inputEncoding);
  }

  @Override
  public MemoryTreebank memoryTreebank() {
    return new MemoryTreebank(treeReaderFactory(), inputEncoding);
  }
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.