int sampleDimension = sampleData.get(0).get().size();
// call EigenVerificationJob separately
solver.run(testData, output, tmp, sampleData.size(), sampleDimension, false, desiredRank);
Path rawEigenvectors = new Path(output, DistributedLanczosSolver.RAW_EIGENVECTORS);
JobConf conf = new JobConf(config);
new EigenVerificationJob().run(testData, rawEigenvectors, output, tmp, 0.5, 0.0, true, conf);
Path cleanEigenvectors = new Path(output, EigenVerificationJob.CLEAN_EIGENVECTORS);
// now multiply the testdata matrix and the eigenvector matrix
DistributedRowMatrix svdT = new DistributedRowMatrix(cleanEigenvectors, tmp, desiredRank - 1, sampleDimension);
svdT.configure(conf);