Package org.apache.mahout.math.hadoop.decomposer

Examples of org.apache.mahout.math.hadoop.decomposer.EigenVerificationJob


                  eigenVectors,
                  eigenValues,
                  lanczosSeqFiles.toString());

    // perform a verification
    EigenVerificationJob verifier = new EigenVerificationJob();
    Path verifiedEigensPath = new Path(outputCalc, "eigenverifier");
    verifier.runJob(conf, lanczosSeqFiles, L.getRowPath(), verifiedEigensPath, true, 1.0, 0.0, clusters);
    Path cleanedEigens = verifier.getCleanedEigensPath();
    DistributedRowMatrix W = new DistributedRowMatrix(cleanedEigens, new Path(cleanedEigens, "tmp"), clusters, numDims);
    W.configure(depConf);
    DistributedRowMatrix Wtrans = W.transpose();
    //    DistributedRowMatrix Wt = W.transpose();
View Full Code Here


                  eigenVectors,
                  eigenValues,
                  seqFiles.toString());

    // now run the verifier to trim down the number of eigenvectors
    EigenVerificationJob verifier = new EigenVerificationJob();
    Path verifiedEigens = new Path(tmp, "verifiedeigens");
    verifier.runJob(conf, seqFiles, input.getRowPath(), verifiedEigens, false, 1.0, 0.0, numEigenVectors);
    Path cleanedEigens = verifier.getCleanedEigensPath();
    return new DistributedRowMatrix(cleanedEigens, new Path(cleanedEigens, "tmp"), numEigenVectors, input.numRows());
  }
View Full Code Here

    int sampleDimension = sampleData.get(0).get().size();
    // call EigenVerificationJob separately
    solver.run(testData, output, tmp, sampleData.size(), sampleDimension, false, desiredRank);
    Path rawEigenvectors = new Path(output, DistributedLanczosSolver.RAW_EIGENVECTORS);
    JobConf conf = new JobConf(config);
    new EigenVerificationJob().run(testData, rawEigenvectors, output, tmp, 0.5, 0.0, true, conf);
    Path cleanEigenvectors = new Path(output, EigenVerificationJob.CLEAN_EIGENVECTORS);

    // now multiply the testdata matrix and the eigenvector matrix
    DistributedRowMatrix svdT = new DistributedRowMatrix(cleanEigenvectors, tmp, desiredRank - 1, sampleDimension);
    svdT.configure(conf);
View Full Code Here

    solver.run(testData, output, tmp, null, sampleData.size(), sampleDimension,
        false, desiredRank);
    Path rawEigenvectors = new Path(output,
        DistributedLanczosSolver.RAW_EIGENVECTORS);
    Configuration conf = new Configuration(config);
    new EigenVerificationJob().run(testData, rawEigenvectors, output, tmp, 0.5,
        0.0, true, conf);
    Path cleanEigenvectors = new Path(output,
        EigenVerificationJob.CLEAN_EIGENVECTORS);
   
    // now multiply the testdata matrix and the eigenvector matrix
View Full Code Here

                  overshoot,
                  true,
                  seqFiles.toString());

    // now run the verifier to trim down the number of eigenvectors
    EigenVerificationJob verifier = new EigenVerificationJob();
    Path verifiedEigens = new Path(tmp, "verifiedeigens");
    verifier.runJob(conf, seqFiles, input.getRowPath(), verifiedEigens, false, 1.0, numEigenVectors);
    Path cleanedEigens = verifier.getCleanedEigensPath();
    return new DistributedRowMatrix(cleanedEigens, new Path(cleanedEigens, "tmp"), numEigenVectors, input.numRows());
  }
View Full Code Here

                  overshoot,
                  true,
                  lanczosSeqFiles.toString());

    // perform a verification
    EigenVerificationJob verifier = new EigenVerificationJob();
    Path verifiedEigensPath = new Path(outputCalc, "eigenverifier");
    verifier.runJob(conf, lanczosSeqFiles, L.getRowPath(), verifiedEigensPath, true, 1.0, clusters);
    Path cleanedEigens = verifier.getCleanedEigensPath();
    DistributedRowMatrix W = new DistributedRowMatrix(cleanedEigens, new Path(cleanedEigens, "tmp"), clusters, numDims);
    W.setConf(depConf);
    DistributedRowMatrix Wtrans = W.transpose();
    //    DistributedRowMatrix Wt = W.transpose();
View Full Code Here

                  overshoot,
                  true,
                  seqFiles.toString());

    // now run the verifier to trim down the number of eigenvectors
    EigenVerificationJob verifier = new EigenVerificationJob();
    Path verifiedEigens = new Path(tmp, "verifiedeigens");
    verifier.runJob(conf, seqFiles, input.getRowPath(), verifiedEigens, false, 1.0, numEigenVectors);
    Path cleanedEigens = verifier.getCleanedEigensPath();
    return new DistributedRowMatrix(cleanedEigens, new Path(cleanedEigens, "tmp"), numEigenVectors, input.numRows());
  }
View Full Code Here

      Path lanczosSeqFiles = new Path(outputCalc, "eigenvectors");

      solver.runJob(conf, state, overshoot, true, lanczosSeqFiles.toString());

      // perform a verification
      EigenVerificationJob verifier = new EigenVerificationJob();
      Path verifiedEigensPath = new Path(outputCalc, "eigenverifier");
      verifier.runJob(conf, lanczosSeqFiles, L.getRowPath(), verifiedEigensPath, true, 1.0, clusters);

      Path cleanedEigens = verifier.getCleanedEigensPath();
      DistributedRowMatrix W = new DistributedRowMatrix(cleanedEigens, new Path(cleanedEigens, "tmp"), clusters,
          numDims);
      W.setConf(depConf);
      DistributedRowMatrix Wtrans = W.transpose();
      data = Wtrans.getRowPath();
View Full Code Here

    // call EigenVerificationJob separately
    int desiredRank = 13;
    solver.run(testData, output, tmp, null, sampleData.size(), sampleDimension, false, desiredRank);
    Path rawEigenvectors = new Path(output, DistributedLanczosSolver.RAW_EIGENVECTORS);
    Configuration conf = new Configuration(config);
    new EigenVerificationJob().run(testData, rawEigenvectors, output, tmp, 0.5, 0.0, true, conf);
    Path cleanEigenvectors = new Path(output, EigenVerificationJob.CLEAN_EIGENVECTORS);

    // now multiply the testdata matrix and the eigenvector matrix
    DistributedRowMatrix svdT = new DistributedRowMatrix(cleanEigenvectors, tmp, desiredRank,
        sampleDimension);
View Full Code Here

                  overshoot,
                  true,
                  lanczosSeqFiles.toString());

    // perform a verification
    EigenVerificationJob verifier = new EigenVerificationJob();
    Path verifiedEigensPath = new Path(outputCalc, "eigenverifier");
    verifier.runJob(conf, lanczosSeqFiles, L.getRowPath(), verifiedEigensPath, true, 1.0, 0.0, clusters);
    Path cleanedEigens = verifier.getCleanedEigensPath();
    DistributedRowMatrix W = new DistributedRowMatrix(cleanedEigens, new Path(cleanedEigens, "tmp"), clusters, numDims);
    W.setConf(depConf);
    DistributedRowMatrix Wtrans = W.transpose();
    //    DistributedRowMatrix Wt = W.transpose();
View Full Code Here

TOP

Related Classes of org.apache.mahout.math.hadoop.decomposer.EigenVerificationJob

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.