Package cascading.pipe

Examples of cascading.pipe.Every


       
        // Group the finished datums, the skipped datums, status, outlinks
        Pipe updatePipe = new CoGroup("update pipe", Pipe.pipes(finishedDatumsFromDb, statusPipe, analyzerPipe, outlinksPipe),
                        Fields.fields(new Fields(CrawlDbDatum.URL_FIELD), new Fields(StatusDatum.URL_FN),
                                        new Fields(AnalyzedDatum.URL_FIELD), new Fields(LinkDatum.URL_FN)), null, new OuterJoin());
        updatePipe = new Every(updatePipe, new UpdateCrawlDbBuffer(), Fields.RESULTS);

       
        // output : loop dir specific crawldb
        BasePath outCrawlDbPath = platform.makePath(curLoopDirPath, CrawlConfig.CRAWLDB_SUBDIR_NAME);
        Tap crawlDbSink = platform.makeTap(platform.makeTextScheme(), outCrawlDbPath, SinkMode.REPLACE);
View Full Code Here


    public FetchPipe(Pipe urlProvider, BaseScoreGenerator scorer, BaseFetcher fetcher, BaseFetcher robotsFetcher, BaseRobotsParser parser,
                    BaseFetchJobPolicy fetchJobPolicy, int numReducers) {
        super(urlProvider);
        Pipe robotsPipe = new Each(urlProvider, new GroupFunction(new GroupByDomain()));
        robotsPipe = new GroupBy("Grouping URLs by IP/delay", robotsPipe, GroupedUrlDatum.getGroupingField());
        robotsPipe = new Every(robotsPipe, new FilterAndScoreByUrlAndRobots(robotsFetcher, parser, scorer), Fields.RESULTS);
       
        // Split into records for URLs that are special (not fetchable) and regular
        SplitterAssembly splitter = new SplitterAssembly(robotsPipe, new SplitIntoSpecialAndRegularKeys());
       
        // Now generate sets of URLs to fetch. We'll wind up with all URLs for the same server & the same crawl delay,
        // ordered by score, getting passed per list to the PreFetchBuffer. This will generate PreFetchDatums that contain a key
        // based on the hash of the IP address (with a range of values == number of reducers), plus a list of URLs and a target
        // crawl time.
        Pipe prefetchPipe = new GroupBy("Distributing URL sets", splitter.getRHSPipe(), GroupedUrlDatum.getGroupingField(), ScoredUrlDatum.getSortingField(), true);
       
        prefetchPipe = new Every(prefetchPipe, new MakeFetchSetsBuffer(fetchJobPolicy, numReducers), Fields.RESULTS);
        Pipe fetchPipe = new GroupBy("Fetching URL sets", prefetchPipe, FetchSetDatum.getGroupingField(), FetchSetDatum.getSortingField());
        fetchPipe = new Every(fetchPipe, new FetchBuffer(fetcher), Fields.RESULTS);

        Pipe fetchedContent = new Pipe(CONTENT_PIPE_NAME, new Each(fetchPipe, new FilterErrorsFunction()));
       
        Pipe fetchedStatus = new Pipe("fetched status", new Each(fetchPipe, new MakeStatusFunction()));
       
View Full Code Here

    stop words -- based on an R script
    */

    Pipe tokenPipe = new Pipe( "token", joinPipe ); // name branch
    tokenPipe = new GroupBy( tokenPipe, new Fields( "token" ) );
    tokenPipe = new Every( tokenPipe, Fields.ALL, new Count(), Fields.ALL );

    /*
    flow part #3
    generate an inverted index for ((uid1,uid2), token) to avoid having to perform
    a cross-product, which would impose a bottleneck in the parallelism
    */

    Pipe invertPipe = new Pipe( "inverted index", joinPipe );
    invertPipe = new CoGroup( invertPipe, new Fields( "token" ), 1, new Fields( "uid1", "ignore", "uid2", "token" ) );

    Fields filterArguments = new Fields( "uid1", "uid2" );
    String uidFilter = "uid1.compareToIgnoreCase( uid2 ) >= 0";
    invertPipe = new Each( invertPipe, filterArguments, new ExpressionFilter( uidFilter, String.class ) );
    Fields ignore = new Fields( "ignore" );
    invertPipe = new Discard( invertPipe, ignore );

    /*
    flow part #4
    count the number of tokens in common for each uid pair and apply a threshold
    */

    Pipe commonPipe = new GroupBy( new Pipe( "uid common", invertPipe ), new Fields( "uid1", "uid2" ) );
    commonPipe = new Every( commonPipe, Fields.ALL, new Count( new Fields( "common" ) ), Fields.ALL );

    String commonFilter = String.format( "common < %d", MIN_COMMON_TOKENS );
    commonPipe = new Each( commonPipe, new Fields( "common" ), new ExpressionFilter( commonFilter, Integer.TYPE ) );

    /*
    flow part #5
    count the number of tokens overall for each uid, then join to calculate
    the vector length for uid1
    */

    Fields tokenCount = new Fields( "token_count" );
    Pipe countPipe = new GroupBy( "count", joinPipe, new Fields( "uid" ) );
    countPipe = new Every( countPipe, Fields.ALL, new Count( tokenCount ), Fields.ALL );

    joinPipe = new CoGroup( countPipe, new Fields( "uid" ), commonPipe, new Fields( "uid1" ) );
    joinPipe = new Pipe( "common", joinPipe );
    joinPipe = new Discard( joinPipe, new Fields( "uid" ) );

View Full Code Here

    if( isCategorical )
      buffer = new CategoricalSelectionBuffer( ensembleSpec );
    else
      buffer = new PredictionSelectionBuffer( ensembleSpec );

    pipe = new Every( pipe, predictedFields, buffer, Fields.SWAP );

    if( modelSchema.getKeyFields().isNone() )
      pipe = new Discard( pipe, keyFields );

    setTails( pipe );
View Full Code Here

    // For every Tuple group
    // count the number of occurrences of "word" and store result in
    // a field named "count"
    Aggregator count = new Count(new Fields("resource"));
    pipeline = new Every(pipeline, count);


    // create a SINK tap to write to the default filesystem
    // by default, TextLine writes all fields out
    Tap remoteLogTap = new Hfs(new TextLine(), outputPath, SinkMode.REPLACE);
View Full Code Here

    Pipe tsPipe = new Each( "arrival rate", new Fields( "time" ), dateParser, Fields.RESULTS );

    // name the per second assembly and split on tsPipe
    Pipe tsCountPipe = new Pipe( "tsCount", tsPipe );
    tsCountPipe = new GroupBy( tsCountPipe, new Fields( "ts" ) );
    tsCountPipe = new Every( tsCountPipe, Fields.GROUP, new Count() );

    // apply expression to create a timestamp with 'minute' granularity
    // declares field "tm"
    Pipe tmPipe = new Each( tsPipe, new ExpressionFunction( new Fields( "tm" ), "ts - (ts % (60 * 1000))", long.class ) );

    // name the per minute assembly and split on tmPipe
    Pipe tmCountPipe = new Pipe( "tmCount", tmPipe );
    tmCountPipe = new GroupBy( tmCountPipe, new Fields( "tm" ) );
    tmCountPipe = new Every( tmCountPipe, Fields.GROUP, new Count() );

    // create taps to write the results the default filesystem, using the given fields
    Tap tsSinkTap = new Hfs( new TextLine(), arrivalRateSecPath );
    Tap tmSinkTap = new Hfs( new TextLine(), arrivalRateMinPath );

View Full Code Here

      RegexGenerator wordGenerator = new RegexGenerator( new Fields( "word" ), "(?<!\\pL)(?=\\pL)[^ ]*(?<=\\pL)(?!\\pL)" );
      pipe = new Each( pipe, new Fields( "words" ), wordGenerator, new Fields( "url", "word" ) );

      // group on "url"
      Pipe urlCountPipe = new GroupBy( sinkUrlName, pipe, new Fields( "url", "word" ) );
      urlCountPipe = new Every( urlCountPipe, new Fields( "url", "word" ), new Count(), new Fields( "url", "word", "count" ) );

      // group on "word"
      Pipe wordCountPipe = new GroupBy( sinkWordName, pipe, new Fields( "word" ) );
      wordCountPipe = new Every( wordCountPipe, new Fields( "word" ), new Count(), new Fields( "word", "count" ) );

      setTails( urlCountPipe, wordCountPipe );
      }
View Full Code Here

    Pipe docPipe = new Each( "token", text, splitter, Fields.RESULTS );

    // determine the word counts
    Pipe wcPipe = new Pipe( "wc", docPipe );
    wcPipe = new GroupBy( wcPipe, token );
    wcPipe = new Every( wcPipe, Fields.ALL, new Count(), Fields.ALL );

    // connect the taps, pipes, etc., into a flow
    FlowDef flowDef = FlowDef.flowDef()
     .setName( "wc" )
     .addSource( docPipe, docTap )
View Full Code Here

    Function splitter = new RegexSplitter( new Fields( "num", "char" ), " " );

    Pipe pipeLower = new Each( new Pipe( "lower" ), new Fields( "line" ), splitter );
    pipeLower = new GroupBy( pipeLower, new Fields( "num" ) );
    pipeLower = new Every( pipeLower, new Fields( "char" ), new First(), Fields.ALL );

    Pipe pipeUpper = new Each( new Pipe( "upper" ), new Fields( "line" ), splitter );
    pipeUpper = new GroupBy( pipeUpper, new Fields( "num" ) );
    pipeUpper = new Every( pipeUpper, new Fields( "char" ), new First(), Fields.ALL );

    Pipe splice = new CoGroup( pipeLower, new Fields( "num" ), pipeUpper, new Fields( "num" ), Fields.size( 4 ) );

    Flow flow = getPlatform().getFlowConnector().connect( sources, sink, splice );
View Full Code Here

    Function splitter1 = new RegexSplitter( new Fields( "num1", "char1" ), " " );

    Pipe pipeLower = new Each( new Pipe( "lower" ), new Fields( "line" ), splitter1 );
    pipeLower = new Each( pipeLower, new Insert( new Fields( "one", "two", "three", "four" ), "one", "two", "three", "four" ), Fields.ALL );
    pipeLower = new GroupBy( pipeLower, new Fields( "num1" ) );
    pipeLower = new Every( pipeLower, new Fields( "char1" ), new First(), Fields.ALL );

    Function splitter2 = new RegexSplitter( new Fields( "num2", "char2" ), " " );

    Pipe pipeUpper = new Each( new Pipe( "upper" ), new Fields( "line" ), splitter2 );
    pipeUpper = new GroupBy( pipeUpper, new Fields( "num2" ) );
    pipeUpper = new Every( pipeUpper, new Fields( "char2" ), new First(), Fields.ALL );

    Pipe splice = new CoGroup( pipeLower, new Fields( "num1" ), pipeUpper, new Fields( "num2" ) );

    Flow flow = getPlatform().getFlowConnector().connect( sources, sink, splice );
View Full Code Here

TOP

Related Classes of cascading.pipe.Every

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.