Package com.google.common.geometry

Source Code of com.google.common.geometry.S2Loop

/*
* Copyright 2006 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package com.google.common.geometry;

import com.google.common.base.Preconditions;
import com.google.common.collect.Maps;
import com.google.common.geometry.S2EdgeIndex.DataEdgeIterator;
import com.google.common.geometry.S2EdgeUtil.EdgeCrosser;

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.logging.Logger;

/**
*
* An S2Loop represents a simple spherical polygon. It consists of a single
* chain of vertices where the first vertex is implicitly connected to the last.
* All loops are defined to have a CCW orientation, i.e. the interior of the
* polygon is on the left side of the edges. This implies that a clockwise loop
* enclosing a small area is interpreted to be a CCW loop enclosing a very large
* area.
*
*  Loops are not allowed to have any duplicate vertices (whether adjacent or
* not), and non-adjacent edges are not allowed to intersect. Loops must have at
* least 3 vertices. Although these restrictions are not enforced in optimized
* code, you may get unexpected results if they are violated.
*
*  Point containment is defined such that if the sphere is subdivided into
* faces (loops), every point is contained by exactly one face. This implies
* that loops do not necessarily contain all (or any) of their vertices An
* S2LatLngRect represents a latitude-longitude rectangle. It is capable of
* representing the empty and full rectangles as well as single points.
*
*/

public final strictfp class S2Loop implements S2Region, Comparable<S2Loop> {
  private static final Logger log = Logger.getLogger(S2Loop.class.getCanonicalName());

  /**
   * Max angle that intersections can be off by and yet still be considered
   * colinear.
   */
  public static final double MAX_INTERSECTION_ERROR = 1e-15;

  /**
   * Edge index used for performance-critical operations. For example,
   * contains() can determine whether a point is inside a loop in nearly
   * constant time, whereas without an edge index it is forced to compare the
   * query point against every edge in the loop.
   */
  private S2EdgeIndex index;

  /** Maps each S2Point to its order in the loop, from 1 to numVertices. */
  private Map<S2Point, Integer> vertexToIndex;

  private final S2Point[] vertices;
  private final int numVertices;

  /**
   * The index (into "vertices") of the vertex that comes first in the total
   * ordering of all vertices in this loop.
   */
  private int firstLogicalVertex;

  private S2LatLngRect bound;
  private boolean originInside;
  private int depth;

  /**
   * Initialize a loop connecting the given vertices. The last vertex is
   * implicitly connected to the first. All points should be unit length. Loops
   * must have at least 3 vertices.
   *
   * @param vertices
   */
  public S2Loop(final List<S2Point> vertices) {
    this.numVertices = vertices.size();
    this.vertices = new S2Point[numVertices];
    this.bound = S2LatLngRect.full();
    this.depth = 0;

    // if (debugMode) {
    //  assert (isValid(vertices, DEFAULT_MAX_ADJACENT));
    // }

    vertices.toArray(this.vertices);

    // initOrigin() must be called before InitBound() because the latter
    // function expects Contains() to work properly.
    initOrigin();
    initBound();
    initFirstLogicalVertex();
  }

  /**
   * Initialize a loop corresponding to the given cell.
   */
  public S2Loop(S2Cell cell) {
    this(cell, cell.getRectBound());
  }

  /**
   * Like the constructor above, but assumes that the cell's bounding rectangle
   * has been precomputed.
   *
   * @param cell
   * @param bound
   */
  public S2Loop(S2Cell cell, S2LatLngRect bound) {
    this.bound = bound;
    numVertices = 4;
    vertices = new S2Point[numVertices];
    vertexToIndex = null;
    index = null;
    depth = 0;
    for (int i = 0; i < 4; ++i) {
      vertices[i] = cell.getVertex(i);
    }
    initOrigin();
    initFirstLogicalVertex();
  }

  /**
   * Copy constructor.
   */
  public S2Loop(S2Loop src) {
    this.numVertices = src.numVertices();
    this.vertices = src.vertices.clone();
    this.vertexToIndex = src.vertexToIndex;
    this.index = src.index;
    this.firstLogicalVertex = src.firstLogicalVertex;
    this.bound = src.getRectBound();
    this.originInside = src.originInside;
    this.depth = src.depth();
  }

  public int depth() {
    return depth;
  }

  /**
   * The depth of a loop is defined as its nesting level within its containing
   * polygon. "Outer shell" loops have depth 0, holes within those loops have
   * depth 1, shells within those holes have depth 2, etc. This field is only
   * used by the S2Polygon implementation.
   *
   * @param depth
   */
  public void setDepth(int depth) {
    this.depth = depth;
  }

  /**
   * Return true if this loop represents a hole in its containing polygon.
   */
  public boolean isHole() {
    return (depth & 1) != 0;
  }

  /**
   * The sign of a loop is -1 if the loop represents a hole in its containing
   * polygon, and +1 otherwise.
   */
  public int sign() {
    return isHole() ? -1 : 1;
  }

  public int numVertices() {
    return numVertices;
  }

  /**
   * For convenience, we make two entire copies of the vertex list available:
   * vertex(n..2*n-1) is mapped to vertex(0..n-1), where n == numVertices().
   */
  public S2Point vertex(int i) {
    try {
      return vertices[i >= vertices.length ? i - vertices.length : i];
    } catch (ArrayIndexOutOfBoundsException e) {
      throw new IllegalStateException("Invalid vertex index");
    }
  }

  /**
   * Comparator (needed by Comparable interface)
   */
  @Override
  public int compareTo(S2Loop other) {
    if (numVertices() != other.numVertices()) {
      return this.numVertices() - other.numVertices();
    }
    // Compare the two loops' vertices, starting with each loop's
    // firstLogicalVertex. This allows us to always catch cases where logically
    // identical loops have different vertex orderings (e.g. ABCD and BCDA).
    int maxVertices = numVertices();
    int iThis = firstLogicalVertex;
    int iOther = other.firstLogicalVertex;
    for (int i = 0; i < maxVertices; ++i, ++iThis, ++iOther) {
      int compare = vertex(iThis).compareTo(other.vertex(iOther));
      if (compare != 0) {
        return compare;
      }
    }
    return 0;
  }

  /**
   * Calculates firstLogicalVertex, the vertex in this loop that comes first in
   * a total ordering of all vertices (by way of S2Point's compareTo function).
   */
  private void initFirstLogicalVertex() {
    int first = 0;
    for (int i = 1; i < numVertices; ++i) {
      if (vertex(i).compareTo(vertex(first)) < 0) {
        first = i;
      }
    }
    firstLogicalVertex = first;
  }

  /**
   * Return true if the loop area is at most 2*Pi.
   */
  public boolean isNormalized() {
    // We allow a bit of error so that exact hemispheres are
    // considered normalized.
    return getArea() <= 2 * S2.M_PI + 1e-14;
  }

  /**
   * Invert the loop if necessary so that the area enclosed by the loop is at
   * most 2*Pi.
   */
  public void normalize() {
    if (!isNormalized()) {
      invert();
    }
  }

  /**
   * Reverse the order of the loop vertices, effectively complementing the
   * region represented by the loop.
   */
  public void invert() {
    int last = numVertices() - 1;
    for (int i = (last - 1) / 2; i >= 0; --i) {
      S2Point t = vertices[i];
      vertices[i] = vertices[last - i];
      vertices[last - i] = t;
    }
    vertexToIndex = null;
    index = null;
    originInside ^= true;
    if (bound.lat().lo() > -S2.M_PI_2 && bound.lat().hi() < S2.M_PI_2) {
      // The complement of this loop contains both poles.
      bound = S2LatLngRect.full();
    } else {
      initBound();
    }
    initFirstLogicalVertex();
  }

  /**
   * Helper method to get area and optionally centroid.
   */
  private S2AreaCentroid getAreaCentroid(boolean doCentroid) {
    S2Point centroid = null;
    // Don't crash even if loop is not well-defined.
    if (numVertices() < 3) {
      return new S2AreaCentroid(0D, centroid);
    }

    // The triangle area calculation becomes numerically unstable as the length
    // of any edge approaches 180 degrees. However, a loop may contain vertices
    // that are 180 degrees apart and still be valid, e.g. a loop that defines
    // the northern hemisphere using four points. We handle this case by using
    // triangles centered around an origin that is slightly displaced from the
    // first vertex. The amount of displacement is enough to get plenty of
    // accuracy for antipodal points, but small enough so that we still get
    // accurate areas for very tiny triangles.
    //
    // Of course, if the loop contains a point that is exactly antipodal from
    // our slightly displaced vertex, the area will still be unstable, but we
    // expect this case to be very unlikely (i.e. a polygon with two vertices on
    // opposite sides of the Earth with one of them displaced by about 2mm in
    // exactly the right direction). Note that the approximate point resolution
    // using the E7 or S2CellId representation is only about 1cm.

    S2Point origin = vertex(0);
    int axis = (origin.largestAbsComponent() + 1) % 3;
    double slightlyDisplaced = origin.get(axis) + S2.M_E * 1e-10;
    origin =
        new S2Point((axis == 0) ? slightlyDisplaced : origin.x,
            (axis == 1) ? slightlyDisplaced : origin.y, (axis == 2) ? slightlyDisplaced : origin.z);
    origin = S2Point.normalize(origin);

    double areaSum = 0;
    S2Point centroidSum = new S2Point(0, 0, 0);
    for (int i = 1; i <= numVertices(); ++i) {
      areaSum += S2.signedArea(origin, vertex(i - 1), vertex(i));
      if (doCentroid) {
        // The true centroid is already premultiplied by the triangle area.
        S2Point trueCentroid = S2.trueCentroid(origin, vertex(i - 1), vertex(i));
        centroidSum = S2Point.add(centroidSum, trueCentroid);
      }
    }
    // The calculated area at this point should be between -4*Pi and 4*Pi,
    // although it may be slightly larger or smaller than this due to
    // numerical errors.
    // assert (Math.abs(areaSum) <= 4 * S2.M_PI + 1e-12);

    if (areaSum < 0) {
      // If the area is negative, we have computed the area to the right of the
      // loop. The area to the left is 4*Pi - (-area). Amazingly, the centroid
      // does not need to be changed, since it is the negative of the integral
      // of position over the region to the right of the loop. This is the same
      // as the integral of position over the region to the left of the loop,
      // since the integral of position over the entire sphere is (0, 0, 0).
      areaSum += 4 * S2.M_PI;
    }
    // The loop's sign() does not affect the return result and should be taken
    // into account by the caller.
    if (doCentroid) {
      centroid = centroidSum;
    }
    return new S2AreaCentroid(areaSum, centroid);
  }

  /**
   * Return the area of the loop interior, i.e. the region on the left side of
   * the loop. The return value is between 0 and 4*Pi and the true centroid of
   * the loop multiplied by the area of the loop (see S2.java for details on
   * centroids). Note that the centroid may not be contained by the loop.
   */
  public S2AreaCentroid getAreaAndCentroid() {
    return getAreaCentroid(true);
  }

  /**
   * Return the area of the polygon interior, i.e. the region on the left side
   * of an odd number of loops. The return value is between 0 and 4*Pi.
   */
  public double getArea() {
    return getAreaCentroid(false).getArea();
  }

  /**
   * Return the true centroid of the polygon multiplied by the area of the
   * polygon (see {@link S2} for details on centroids). Note that the centroid
   * may not be contained by the polygon.
   */
  public S2Point getCentroid() {
    return getAreaCentroid(true).getCentroid();
  }

  // The following are the possible relationships between two loops A and B:
  //
  // (1) A and B do not intersect.
  // (2) A contains B.
  // (3) B contains A.
  // (4) The boundaries of A and B cross (i.e. the boundary of A
  // intersects the interior and exterior of B and vice versa).
  // (5) (A union B) is the entire sphere (i.e. A contains the
  // complement of B and vice versa).
  //
  // More than one of these may be true at the same time, for example if
  // A == B or A == Complement(B).

  /**
   * Return true if the region contained by this loop is a superset of the
   * region contained by the given other loop.
   */
  public boolean contains(S2Loop b) {
    // For this loop A to contains the given loop B, all of the following must
    // be true:
    //
    // (1) There are no edge crossings between A and B except at vertices.
    //
    // (2) At every vertex that is shared between A and B, the local edge
    // ordering implies that A contains B.
    //
    // (3) If there are no shared vertices, then A must contain a vertex of B
    // and B must not contain a vertex of A. (An arbitrary vertex may be
    // chosen in each case.)
    //
    // The second part of (3) is necessary to detect the case of two loops whose
    // union is the entire sphere, i.e. two loops that contains each other's
    // boundaries but not each other's interiors.

    if (!bound.contains(b.getRectBound())) {
      return false;
    }

    // Unless there are shared vertices, we need to check whether A contains a
    // vertex of B. Since shared vertices are rare, it is more efficient to do
    // this test up front as a quick rejection test.
    if (!contains(b.vertex(0)) && findVertex(b.vertex(0)) < 0) {
      return false;
    }

    // Now check whether there are any edge crossings, and also check the loop
    // relationship at any shared vertices.
    if (checkEdgeCrossings(b, new S2EdgeUtil.WedgeContains()) <= 0) {
      return false;
    }

    // At this point we know that the boundaries of A and B do not intersect,
    // and that A contains a vertex of B. However we still need to check for
    // the case mentioned above, where (A union B) is the entire sphere.
    // Normally this check is very cheap due to the bounding box precondition.
    if (bound.union(b.getRectBound()).isFull()) {
      if (b.contains(vertex(0)) && b.findVertex(vertex(0)) < 0) {
        return false;
      }
    }
    return true;
  }

  /**
   * Return true if the region contained by this loop intersects the region
   * contained by the given other loop.
   */
  public boolean intersects(S2Loop b) {
    // a->Intersects(b) if and only if !a->Complement()->Contains(b).
    // This code is similar to Contains(), but is optimized for the case
    // where both loops enclose less than half of the sphere.

    if (!bound.intersects(b.getRectBound())) {
      return false;
    }

    // Normalize the arguments so that B has a smaller longitude span than A.
    // This makes intersection tests much more efficient in the case where
    // longitude pruning is used (see CheckEdgeCrossings).
    if (b.getRectBound().lng().getLength() > bound.lng().getLength()) {
      return b.intersects(this);
    }

    // Unless there are shared vertices, we need to check whether A contains a
    // vertex of B. Since shared vertices are rare, it is more efficient to do
    // this test up front as a quick acceptance test.
    if (contains(b.vertex(0)) && findVertex(b.vertex(0)) < 0) {
      return true;
    }

    // Now check whether there are any edge crossings, and also check the loop
    // relationship at any shared vertices.
    if (checkEdgeCrossings(b, new S2EdgeUtil.WedgeIntersects()) < 0) {
      return true;
    }

    // We know that A does not contain a vertex of B, and that there are no edge
    // crossings. Therefore the only way that A can intersect B is if B
    // entirely contains A. We can check this by testing whether B contains an
    // arbitrary non-shared vertex of A. Note that this check is cheap because
    // of the bounding box precondition and the fact that we normalized the
    // arguments so that A's longitude span is at least as long as B's.
    if (b.getRectBound().contains(bound)) {
      if (b.contains(vertex(0)) && b.findVertex(vertex(0)) < 0) {
        return true;
      }
    }

    return false;
  }

  /**
   * Given two loops of a polygon, return true if A contains B. This version of
   * contains() is much cheaper since it does not need to check whether the
   * boundaries of the two loops cross.
   */
  public boolean containsNested(S2Loop b) {
    if (!bound.contains(b.getRectBound())) {
      return false;
    }

    // We are given that A and B do not share any edges, and that either one
    // loop contains the other or they do not intersect.
    int m = findVertex(b.vertex(1));
    if (m < 0) {
      // Since b->vertex(1) is not shared, we can check whether A contains it.
      return contains(b.vertex(1));
    }
    // Check whether the edge order around b->vertex(1) is compatible with
    // A containin B.
    return (new S2EdgeUtil.WedgeContains()).test(
        vertex(m - 1), vertex(m), vertex(m + 1), b.vertex(0), b.vertex(2)) > 0;
  }

  /**
   * Return +1 if A contains B (i.e. the interior of B is a subset of the
   * interior of A), -1 if the boundaries of A and B cross, and 0 otherwise.
   * Requires that A does not properly contain the complement of B, i.e. A and B
   * do not contain each other's boundaries. This method is used for testing
   * whether multi-loop polygons contain each other.
   */
  public int containsOrCrosses(S2Loop b) {
    // There can be containment or crossing only if the bounds intersect.
    if (!bound.intersects(b.getRectBound())) {
      return 0;
    }

    // Now check whether there are any edge crossings, and also check the loop
    // relationship at any shared vertices. Note that unlike Contains() or
    // Intersects(), we can't do a point containment test as a shortcut because
    // we need to detect whether there are any edge crossings.
    int result = checkEdgeCrossings(b, new S2EdgeUtil.WedgeContainsOrCrosses());

    // If there was an edge crossing or a shared vertex, we know the result
    // already. (This is true even if the result is 1, but since we don't
    // bother keeping track of whether a shared vertex was seen, we handle this
    // case below.)
    if (result <= 0) {
      return result;
    }

    // At this point we know that the boundaries do not intersect, and we are
    // given that (A union B) is a proper subset of the sphere. Furthermore
    // either A contains B, or there are no shared vertices (due to the check
    // above). So now we just need to distinguish the case where A contains B
    // from the case where B contains A or the two loops are disjoint.
    if (!bound.contains(b.getRectBound())) {
      return 0;
    }
    if (!contains(b.vertex(0)) && findVertex(b.vertex(0)) < 0) {
      return 0;
    }

    return 1;
  }

  /**
   * Returns true if two loops have the same boundary except for vertex
   * perturbations. More precisely, the vertices in the two loops must be in the
   * same cyclic order, and corresponding vertex pairs must be separated by no
   * more than maxError. Note: This method mostly useful only for testing
   * purposes.
   */
  boolean boundaryApproxEquals(S2Loop b, double maxError) {
    if (numVertices() != b.numVertices()) {
      return false;
    }
    int maxVertices = numVertices();
    int iThis = firstLogicalVertex;
    int iOther = b.firstLogicalVertex;
    for (int i = 0; i < maxVertices; ++i, ++iThis, ++iOther) {
      if (!S2.approxEquals(vertex(iThis), b.vertex(iOther), maxError)) {
        return false;
      }
    }
    return true;
  }

  // S2Region interface (see {@code S2Region} for details):

  /** Return a bounding spherical cap. */
  @Override
  public S2Cap getCapBound() {
    return bound.getCapBound();
  }


  /** Return a bounding latitude-longitude rectangle. */
  @Override
  public S2LatLngRect getRectBound() {
    return bound;
  }

  /**
   * If this method returns true, the region completely contains the given cell.
   * Otherwise, either the region does not contain the cell or the containment
   * relationship could not be determined.
   */
  @Override
  public boolean contains(S2Cell cell) {
    // It is faster to construct a bounding rectangle for an S2Cell than for
    // a general polygon. A future optimization could also take advantage of
    // the fact than an S2Cell is convex.

    S2LatLngRect cellBound = cell.getRectBound();
    if (!bound.contains(cellBound)) {
      return false;
    }
    S2Loop cellLoop = new S2Loop(cell, cellBound);
    return contains(cellLoop);
  }

  /**
   * If this method returns false, the region does not intersect the given cell.
   * Otherwise, either region intersects the cell, or the intersection
   * relationship could not be determined.
   */
  @Override
  public boolean mayIntersect(S2Cell cell) {
    // It is faster to construct a bounding rectangle for an S2Cell than for
    // a general polygon. A future optimization could also take advantage of
    // the fact than an S2Cell is convex.

    S2LatLngRect cellBound = cell.getRectBound();
    if (!bound.intersects(cellBound)) {
      return false;
    }
    return new S2Loop(cell, cellBound).intersects(this);
  }

  /**
   * The point 'p' does not need to be normalized.
   */
  public boolean contains(S2Point p) {
    if (!bound.contains(p)) {
      return false;
    }

    boolean inside = originInside;
    S2Point origin = S2.origin();
    S2EdgeUtil.EdgeCrosser crosser = new S2EdgeUtil.EdgeCrosser(origin, p,
        vertices[numVertices - 1]);

    // The s2edgeindex library is not optimized yet for long edges,
    // so the tradeoff to using it comes with larger loops.
    if (numVertices < 2000) {
      for (int i = 0; i < numVertices; i++) {
        inside ^= crosser.edgeOrVertexCrossing(vertices[i]);
      }
    } else {
      DataEdgeIterator it = getEdgeIterator(numVertices);
      int previousIndex = -2;
      for (it.getCandidates(origin, p); it.hasNext(); it.next()) {
        int ai = it.index();
        if (previousIndex != ai - 1) {
          crosser.restartAt(vertices[ai]);
        }
        previousIndex = ai;
        inside ^= crosser.edgeOrVertexCrossing(vertex(ai + 1));
      }
    }

    return inside;
  }

  /**
   * Returns the shortest distance from a point P to this loop, given as the
   * angle formed between P, the origin and the nearest point on the loop to P.
   * This angle in radians is equivalent to the arclength along the unit sphere.
   */
  public S1Angle getDistance(S2Point p) {
    S2Point normalized = S2Point.normalize(p);

    // The furthest point from p on the sphere is its antipode, which is an
    // angle of PI radians. This is an upper bound on the angle.
    S1Angle minDistance = S1Angle.radians(Math.PI);
    for (int i = 0; i < numVertices(); i++) {
      minDistance =
          S1Angle.min(minDistance, S2EdgeUtil.getDistance(normalized, vertex(i), vertex(i + 1)));
    }
    return minDistance;
  }

  /**
   * Creates an edge index over the vertices, which by itself takes no time.
   * Then the expected number of queries is used to determine whether brute
   * force lookups are likely to be slower than really creating an index, and if
   * so, we do so. Finally an iterator is returned that can be used to perform
   * edge lookups.
   */
  private final DataEdgeIterator getEdgeIterator(int expectedQueries) {
    if (index == null) {
      index = new S2EdgeIndex() {
        @Override
        protected int getNumEdges() {
          return numVertices;
        }

        @Override
        protected S2Point edgeFrom(int index) {
          return vertex(index);
        }

        @Override
        protected S2Point edgeTo(int index) {
          return vertex(index + 1);
        }
      };
    }
    index.predictAdditionalCalls(expectedQueries);
    return new S2EdgeIndex.DataEdgeIterator(index);
  }

  /** Return true if this loop is valid. */
  public boolean isValid() {
    if (numVertices < 3) {
      log.info("Degenerate loop");
      return false;
    }

    // All vertices must be unit length.
    for (int i = 0; i < numVertices; ++i) {
      if (!S2.isUnitLength(vertex(i))) {
        log.info("Vertex " + i + " is not unit length");
        return false;
      }
    }

    // Loops are not allowed to have any duplicate vertices.
    HashMap<S2Point, Integer> vmap = Maps.newHashMap();
    for (int i = 0; i < numVertices; ++i) {
      Integer previousVertexIndex = vmap.put(vertex(i), i);
      if (previousVertexIndex != null) {
        log.info("Duplicate vertices: " + previousVertexIndex + " and " + i);
        return false;
      }
    }

    // Non-adjacent edges are not allowed to intersect.
    boolean crosses = false;
    DataEdgeIterator it = getEdgeIterator(numVertices);
    for (int a1 = 0; a1 < numVertices; a1++) {
      int a2 = (a1 + 1) % numVertices;
      EdgeCrosser crosser = new EdgeCrosser(vertex(a1), vertex(a2), vertex(0));
      int previousIndex = -2;
      for (it.getCandidates(vertex(a1), vertex(a2)); it.hasNext(); it.next()) {
        int b1 = it.index();
        int b2 = (b1 + 1) % numVertices;
        // If either 'a' index equals either 'b' index, then these two edges
        // share a vertex. If a1==b1 then it must be the case that a2==b2, e.g.
        // the two edges are the same. In that case, we skip the test, since we
        // don't want to test an edge against itself. If a1==b2 or b1==a2 then
        // we have one edge ending at the start of the other, or in other words,
        // the edges share a vertex -- and in S2 space, where edges are always
        // great circle segments on a sphere, edges can only intersect at most
        // once, so we don't need to do further checks in that case either.
        if (a1 != b2 && a2 != b1 && a1 != b1) {
          // WORKAROUND(shakusa, ericv): S2.robustCCW() currently
          // requires arbitrary-precision arithmetic to be truly robust. That
          // means it can give the wrong answers in cases where we are trying
          // to determine edge intersections. The workaround is to ignore
          // intersections between edge pairs where all four points are
          // nearly colinear.
          double abc = S2.angle(vertex(a1), vertex(a2), vertex(b1));
          boolean abcNearlyLinear = S2.approxEquals(abc, 0D, MAX_INTERSECTION_ERROR) ||
              S2.approxEquals(abc, S2.M_PI, MAX_INTERSECTION_ERROR);
          double abd = S2.angle(vertex(a1), vertex(a2), vertex(b2));
          boolean abdNearlyLinear = S2.approxEquals(abd, 0D, MAX_INTERSECTION_ERROR) ||
              S2.approxEquals(abd, S2.M_PI, MAX_INTERSECTION_ERROR);
          if (abcNearlyLinear && abdNearlyLinear) {
            continue;
          }

          if (previousIndex != b1) {
            crosser.restartAt(vertex(b1));
          }

          // Beware, this may return the loop is valid if there is a
          // "vertex crossing".
          // TODO(user): Fix that.
          crosses = crosser.robustCrossing(vertex(b2)) > 0;
          previousIndex = b2;
          if (crosses ) {
            log.info("Edges " + a1 + " and " + b1 + " cross");
            log.info(String.format("Edge locations in degrees: " + "%s-%s and %s-%s",
                new S2LatLng(vertex(a1)).toStringDegrees(),
                new S2LatLng(vertex(a2)).toStringDegrees(),
                new S2LatLng(vertex(b1)).toStringDegrees(),
                new S2LatLng(vertex(b2)).toStringDegrees()));
            return false;
          }
        }
      }
    }

    return true;
  }

  /**
   * Static version of isValid(), to be used only when an S2Loop instance is not
   * available, but validity of the points must be checked.
   *
   * @return true if the given loop is valid. Creates an instance of S2Loop and
   *         defers this call to {@link #isValid()}.
   */
  public static boolean isValid(List<S2Point> vertices) {
    return new S2Loop(vertices).isValid();
  }

  @Override
  public String toString() {
    StringBuilder builder = new StringBuilder("S2Loop, ");

    builder.append(vertices.length).append(" points. [");

    for (S2Point v : vertices) {
      builder.append(v.toString()).append(" ");
    }
    builder.append("]");

    return builder.toString();
  }

  private void initOrigin() {
    // The bounding box does not need to be correct before calling this
    // function, but it must at least contain vertex(1) since we need to
    // do a Contains() test on this point below.
    Preconditions.checkState(bound.contains(vertex(1)));

    // To ensure that every point is contained in exactly one face of a
    // subdivision of the sphere, all containment tests are done by counting the
    // edge crossings starting at a fixed point on the sphere (S2::Origin()).
    // We need to know whether this point is inside or outside of the loop.
    // We do this by first guessing that it is outside, and then seeing whether
    // we get the correct containment result for vertex 1. If the result is
    // incorrect, the origin must be inside the loop.
    //
    // A loop with consecutive vertices A,B,C contains vertex B if and only if
    // the fixed vector R = S2::Ortho(B) is on the left side of the wedge ABC.
    // The test below is written so that B is inside if C=R but not if A=R.

    originInside = false; // Initialize before calling Contains().
    boolean v1Inside = S2.orderedCCW(S2.ortho(vertex(1)), vertex(0), vertex(2), vertex(1));
    if (v1Inside != contains(vertex(1))) {
      originInside = true;
    }
  }

  private void initBound() {
    // The bounding rectangle of a loop is not necessarily the same as the
    // bounding rectangle of its vertices. First, the loop may wrap entirely
    // around the sphere (e.g. a loop that defines two revolutions of a
    // candy-cane stripe). Second, the loop may include one or both poles.
    // Note that a small clockwise loop near the equator contains both poles.

    S2EdgeUtil.RectBounder bounder = new S2EdgeUtil.RectBounder();
    for (int i = 0; i <= numVertices(); ++i) {
      bounder.addPoint(vertex(i));
    }
    S2LatLngRect b = bounder.getBound();
    // Note that we need to initialize bound with a temporary value since
    // contains() does a bounding rectangle check before doing anything else.
    bound = S2LatLngRect.full();
    if (contains(new S2Point(0, 0, 1))) {
      b = new S2LatLngRect(new R1Interval(b.lat().lo(), S2.M_PI_2), S1Interval.full());
    }
    // If a loop contains the south pole, then either it wraps entirely
    // around the sphere (full longitude range), or it also contains the
    // north pole in which case b.lng().isFull() due to the test above.

    if (b.lng().isFull() && contains(new S2Point(0, 0, -1))) {
      b = new S2LatLngRect(new R1Interval(-S2.M_PI_2, b.lat().hi()), b.lng());
    }
    bound = b;
  }

  /**
   * Return the index of a vertex at point "p", or -1 if not found. The return
   * value is in the range 1..num_vertices_ if found.
   */
  private int findVertex(S2Point p) {
    if (vertexToIndex == null) {
      vertexToIndex = new HashMap<S2Point, Integer>();
      for (int i = 1; i <= numVertices; i++) {
        vertexToIndex.put(vertex(i), i);
      }
    }
    Integer index = vertexToIndex.get(p);
    if (index == null) {
      return -1;
    } else {
      return index;
    }
  }

  /**
   * This method encapsulates the common code for loop containment and
   * intersection tests. It is used in three slightly different variations to
   * implement contains(), intersects(), and containsOrCrosses().
   *
   *  In a nutshell, this method checks all the edges of this loop (A) for
   * intersection with all the edges of B. It returns -1 immediately if any edge
   * intersections are found. Otherwise, if there are any shared vertices, it
   * returns the minimum value of the given WedgeRelation for all such vertices
   * (returning immediately if any wedge returns -1). Returns +1 if there are no
   * intersections and no shared vertices.
   */
  private int checkEdgeCrossings(S2Loop b, S2EdgeUtil.WedgeRelation relation) {
    DataEdgeIterator it = getEdgeIterator(b.numVertices);
    int result = 1;
    // since 'this' usually has many more vertices than 'b', use the index on
    // 'this' and loop over 'b'
    for (int j = 0; j < b.numVertices(); ++j) {
      S2EdgeUtil.EdgeCrosser crosser =
        new S2EdgeUtil.EdgeCrosser(b.vertex(j), b.vertex(j + 1), vertex(0));
      int previousIndex = -2;
      for (it.getCandidates(b.vertex(j), b.vertex(j + 1)); it.hasNext(); it.next()) {
        int i = it.index();
        if (previousIndex != i - 1) {
          crosser.restartAt(vertex(i));
        }
        previousIndex = i;
        int crossing = crosser.robustCrossing(vertex(i + 1));
        if (crossing < 0) {
          continue;
        }
        if (crossing > 0) {
          return -1; // There is a proper edge crossing.
        }
        if (vertex(i + 1).equals(b.vertex(j + 1))) {
          result = Math.min(result, relation.test(
              vertex(i), vertex(i + 1), vertex(i + 2), b.vertex(j), b.vertex(j + 2)));
          if (result < 0) {
            return result;
          }
        }
      }
    }
    return result;
  }
}
TOP

Related Classes of com.google.common.geometry.S2Loop

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.