/*
* This file is modified by Ivan Maidanski <ivmai@ivmaisoft.com>
* Project name: JCGO-SUNAWT (http://www.ivmaisoft.com/jcgo/)
*/
/*
* @(#)WPathGraphics.java 1.28 03/01/23
*
* Copyright 2003 Sun Microsystems, Inc. All rights reserved.
* SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/
package sun.awt.windows;
import java.awt.AlphaComposite;
import java.awt.BasicStroke;
import java.awt.Color;
import java.awt.Composite;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.Image;
import java.awt.Paint;
import java.awt.Shape;
import java.awt.Stroke;
import java.awt.Transparency;
import java.awt.font.GlyphVector;
import java.awt.geom.AffineTransform;
import java.awt.geom.NoninvertibleTransformException;
import java.awt.geom.PathIterator;
import java.awt.geom.Point2D;
import java.awt.geom.Rectangle2D;
import java.awt.geom.Line2D;
import java.awt.image.BufferedImage;
import java.awt.image.BufferedImageOp;
import java.awt.image.ColorModel;
import java.awt.image.DataBuffer;
import java.awt.image.DataBufferInt;
import java.awt.image.ImageObserver;
import java.awt.image.IndexColorModel;
import java.awt.image.Raster;
import java.awt.image.RenderedImage;
import java.awt.image.SampleModel;
import java.awt.image.SinglePixelPackedSampleModel;
import java.awt.print.PageFormat;
import java.awt.print.Printable;
import java.awt.print.PrinterException;
import java.awt.print.PrinterJob;
import sun.awt.PlatformFont;
import sun.awt.image.ByteComponentRaster;
import sun.print.PathGraphics;
import sun.print.ProxyGraphics2D;
import sun.java2d.SunGraphicsEnvironment;
class WPathGraphics extends PathGraphics {
/**
* For a drawing application the initial user space
* resolution is 72dpi.
*/
private static final int DEFAULT_USER_RES = 72;
private static final float MIN_DEVICE_LINEWIDTH = 1.2f;
private static final float MAX_THINLINE_INCHES = 0.014f;
private Font lastFont;
private Font lastDeviceSizeFont;
private int lastAngle;
private float lastScaledFontSize;
private float lastAverageWidthScale;
WPathGraphics(Graphics2D graphics, PrinterJob printerJob,
Printable painter, PageFormat pageFormat, int pageIndex,
boolean canRedraw) {
super(graphics, printerJob, painter, pageFormat, pageIndex, canRedraw);
}
/**
* Creates a new <code>Graphics</code> object that is
* a copy of this <code>Graphics</code> object.
* @return a new graphics context that is a copy of
* this graphics context.
* @since JDK1.0
*/
public Graphics create() {
return new WPathGraphics((Graphics2D) getDelegate().create(),
getPrinterJob(),
getPrintable(),
getPageFormat(),
getPageIndex(),
canDoRedraws());
}
/**
* Strokes the outline of a Shape using the settings of the current
* graphics state. The rendering attributes applied include the
* clip, transform, paint or color, composite and stroke attributes.
* @param s The shape to be drawn.
* @see #setStroke
* @see #setPaint
* @see java.awt.Graphics#setColor
* @see #transform
* @see #setTransform
* @see #clip
* @see #setClip
* @see #setComposite
*/
public void draw(Shape s) {
Stroke stroke = getStroke();
/* If the line being drawn is thinner than can be
* rendered, then change the line width, stroke
* the shape, and then set the line width back.
* We can only do this for BasicStroke's.
*/
if (stroke instanceof BasicStroke) {
BasicStroke lineStroke;
BasicStroke minLineStroke = null;
float deviceLineWidth;
float lineWidth;
AffineTransform deviceTransform;
Point2D.Float penSize;
/* Get the requested line width in user space.
*/
lineStroke = (BasicStroke) stroke;
lineWidth = lineStroke.getLineWidth();
penSize = new Point2D.Float(lineWidth, lineWidth);
/* Compute the line width in device coordinates.
* Work on a point in case there is asymetric scaling
* between user and device space.
* Take the absolute value in case there is negative
* scaling in effect.
*/
deviceTransform = getTransform();
deviceTransform.deltaTransform(penSize, penSize);
deviceLineWidth = Math.min(Math.abs(penSize.x),
Math.abs(penSize.y));
/* If the requested line is too thin then map our
* minimum line width back to user space and set
* a new BasicStroke.
*/
if (deviceLineWidth < MIN_DEVICE_LINEWIDTH) {
Point2D.Float minPenSize = new Point2D.Float(
MIN_DEVICE_LINEWIDTH,
MIN_DEVICE_LINEWIDTH);
try {
AffineTransform inverse;
float minLineWidth;
/* Convert the minimum line width from device
* space to user space.
*/
inverse = deviceTransform.createInverse();
inverse.deltaTransform(minPenSize, minPenSize);
minLineWidth = Math.max(Math.abs(minPenSize.x),
Math.abs(minPenSize.y));
/* Use all of the parameters from the current
* stroke but change the line width to our
* calculated minimum.
*/
minLineStroke = new BasicStroke(minLineWidth,
lineStroke.getEndCap(),
lineStroke.getLineJoin(),
lineStroke.getMiterLimit(),
lineStroke.getDashArray(),
lineStroke.getDashPhase());
setStroke(minLineStroke);
} catch (NoninvertibleTransformException e) {
/* If we can't invert the matrix there is something
* very wrong so don't worry about the minor matter
* of a minimum line width.
*/
}
}
super.draw(s);
/* If we changed the stroke, put back the old
* stroke in order to maintain a minimum line
* width.
*/
if (minLineStroke != null) {
setStroke(lineStroke);
}
/* The stroke in effect was not a BasicStroke so we
* will not try to enforce a minimum line width.
*/
} else {
super.draw(s);
}
}
/**
* Draws the text given by the specified string, using this
* graphics context's current font and color. The baseline of the
* first character is at position (<i>x</i>, <i>y</i>) in this
* graphics context's coordinate system.
* @param str the string to be drawn.
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
* @see java.awt.Graphics#drawBytes
* @see java.awt.Graphics#drawChars
* @since JDK1.0
*/
public void drawString(String str, int x, int y) {
drawString(str, (float) x, (float) y);
}
/**
* Renders the text specified by the specified <code>String</code>,
* using the current <code>Font</code> and <code>Paint</code> attributes
* in the <code>Graphics2D</code> context.
* The baseline of the first character is at position
* (<i>x</i>, <i>y</i>) in the User Space.
* The rendering attributes applied include the <code>Clip</code>,
* <code>Transform</code>, <code>Paint</code>, <code>Font</code> and
* <code>Composite</code> attributes. For characters in script systems
* such as Hebrew and Arabic, the glyphs can be rendered from right to
* left, in which case the coordinate supplied is the location of the
* leftmost character on the baseline.
* @param s the <code>String</code> to be rendered
* @param x, y the coordinates where the <code>String</code>
* should be rendered
* @see #setPaint
* @see java.awt.Graphics#setColor
* @see java.awt.Graphics#setFont
* @see #setTransform
* @see #setComposite
* @see #setClip
*/
public void drawString(String str, float x, float y) {
boolean drawnWithGDI = false;
AffineTransform deviceTransform = getTransform();
AffineTransform fontTransform = new AffineTransform(deviceTransform);
fontTransform.concatenate(getFont().getTransform());
int transformType = fontTransform.getType();
/* Use GDI for the text if the graphics transform is something
* for which we can obtain a suitable GDI font.
* A flip or shearing transform on the graphics or a transform
* on the font force us to decompose the text into a shape.
*/
boolean directToGDI = ((transformType !=
AffineTransform.TYPE_GENERAL_TRANSFORM)
&& ((transformType & AffineTransform.TYPE_FLIP)
== 0));
boolean shapingNeeded = stringNeedsShaping(str);
if (!WPrinterJob.shapeTextProp && directToGDI && !shapingNeeded) {
/* Compute the starting position of the string in
* device space.
*/
Point2D.Float pos = new Point2D.Float(x, y);
deviceTransform.transform(pos, pos);
/* Get the font size in device coordinates.
* Because this code only supports uniformly scaled
* device transforms, the fontSize must be equal in the
* x and y directions.
*/
Font currentFont = getFont();
float fontSize = currentFont.getSize2D();
Point2D.Double pty = new Point2D.Double(0.0, 1.0);
fontTransform.deltaTransform(pty, pty);
double scaleFactorY = Math.sqrt(pty.x*pty.x+pty.y*pty.y);
float scaledFontSizeY = (float)(fontSize * scaleFactorY);
Point2D.Double pt = new Point2D.Double(1.0, 0.0);
fontTransform.deltaTransform(pt, pt);
double scaleFactorX = Math.sqrt(pt.x*pt.x+pt.y*pt.y);
float scaledFontSizeX = (float)(fontSize * scaleFactorX);
float awScale =(float)(scaleFactorX/scaleFactorY);
/* don't let rounding errors be interpreted as non-uniform scale */
if (awScale > 0.999f && awScale < 1.001f) {
awScale = 1.0f;
}
/* Get the rotation in 1/10'ths degree (as needed by Windows)
* so that GDI can draw the text rotated.
* This calculation is only valid for a uniform scale, no shearing.
*/
double angle = Math.toDegrees(Math.atan2(pt.y, pt.x));
if (angle < 0.0) {
angle+= 360.0;
}
/* Windows specifies the rotation anti-clockwise from the x-axis
* of the device, 2D specifies +ve rotation towards the y-axis
* Since the 2D y-axis runs from top-to-bottom, windows angle of
* rotation here is opposite than 2D's, so the rotation needed
* needs to be recalculated in the opposite direction.
*/
if (angle != 0.0) {
angle = 360.0 - angle;
}
int iangle = (int)Math.round(angle * 10.0);
/* If the last font used is identical to the current font
* then we re-use the previous scaled Java font. This is
* not just a benefit for Java object re-use, it allows re-use
* of GDI fonts in the font peer of logical fonts and
* printer drivers will not need to keep setting the font
*/
Font deviceSizeFont;
if ((currentFont != null) && (lastFont != null) &&
(lastDeviceSizeFont != null) &&
(scaledFontSizeY == lastScaledFontSize) &&
(awScale == lastAverageWidthScale) &&
currentFont.equals(lastFont) && (iangle == lastAngle)) {
deviceSizeFont = lastDeviceSizeFont;
} else {
deviceSizeFont = currentFont.deriveFont(scaledFontSizeY);
lastAngle = iangle;
lastScaledFontSize = scaledFontSizeY;
lastAverageWidthScale = awScale;
lastDeviceSizeFont = deviceSizeFont;
lastFont = currentFont;
}
/*
* If there is a mapping from the java font to the GDI
* font then we can draw the text with GDI. If there is
* no such mapping then setFont will return false and
* we'll decompose the text into a Shape.
*
*/
WPrinterJob wPrinterJob = (WPrinterJob) getPrinterJob();
boolean gotLogicalFont = false;
boolean gotPhysicalFont =
wPrinterJob.setFont(deviceSizeFont, iangle, awScale);
if (!gotPhysicalFont &&
SunGraphicsEnvironment.isLogicalFont(deviceSizeFont)) {
gotLogicalFont =
wPrinterJob.setLogicalFont(deviceSizeFont,
iangle, awScale);
if (gotLogicalFont) {
try {
/* check all chars in string can be converted */
if (((PlatformFont)deviceSizeFont.getPeer()).
makeMultiCharsetString(str, false) == null)
{
gotLogicalFont = false;
}
} catch (Exception e) {
gotLogicalFont = false;
}
}
}
if (gotPhysicalFont || gotLogicalFont) {
/* Set the text color.
* We should not be in this shape printing path
* if the application is drawing with non-solid
* colors. We should be in the raster path. Because
* we are here in the shape path, the cast of the
* paint to a Color should be fine.
*/
try {
wPrinterJob.setTextColor( (Color) getPaint());
} catch (ClassCastException e) {
throw new IllegalArgumentException(
"Expected a Color instance");
}
if (getClip() != null) {
deviceClip(getClip().getPathIterator(deviceTransform));
}
/* Let GDI draw the text by positioning each glyph
* as calculated by windows.
* REMIND: as per eval of bug 4271596, we can't use T2K
* to calculate the glyph advances
*/
wPrinterJob.textOut(str, pos.x, pos.y,
(gotLogicalFont ? deviceSizeFont : null));
drawnWithGDI = true;
}
}
/* The text could not be converted directly to GDI text
* calls so decompose the text into a shape.
*/
if (drawnWithGDI == false) {
super.drawString(str, x, y);
}
}
/* GDI doesn't handle shaping or BIDI consistently with on-screen cases
* and TextLayout, so we will skip GDI text for Arabic & Hebrew.
* Results should then be correct for those locales.
*/
private boolean stringNeedsShaping(String s) {
boolean shapingNeeded = false;
char[] chars = s.toCharArray();
char c;
for (int i=0; i<chars.length;i++) {
c = chars[i];
if ((c & 0xfe00) == 0) {
continue; // if roman assume no shaping, BIDI
}
if ((c >= 0x0590) && (c <= 0x05ff)) { // Hebrew
shapingNeeded = true;
break;
}
if ((c >= 0x0600) && (c <= 0x06ff)) { // Arabic
shapingNeeded = true;
break;
}
if ((c >= 0x202a) && (c <= 0x202e)) { // directional control
shapingNeeded = true;
break;
}
if ((c >= 0x206a) && (c <= 0x206f)) { // directional control
shapingNeeded = true;
break;
}
}
return shapingNeeded;
}
/**
* Draws as much of the specified image as is currently available.
* The image is drawn with its top-left corner at
* (<i>x</i>, <i>y</i>) in this graphics context's coordinate
* space. Transparent pixels in the image do not affect whatever
* pixels are already there.
* <p>
* This method returns immediately in all cases, even if the
* complete image has not yet been loaded, and it has not been dithered
* and converted for the current output device.
* <p>
* If the image has not yet been completely loaded, then
* <code>drawImage</code> returns <code>false</code>. As more of
* the image becomes available, the process that draws the image notifies
* the specified image observer.
* @param img the specified image to be drawn.
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
* @param observer object to be notified as more of
* the image is converted.
* @see java.awt.Image
* @see java.awt.image.ImageObserver
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
* @since JDK1.0
*/
public boolean drawImage(Image img, int x, int y,
ImageObserver observer) {
return drawImage(img, x, y, null, observer);
}
/**
* Draws as much of the specified image as has already been scaled
* to fit inside the specified rectangle.
* <p>
* The image is drawn inside the specified rectangle of this
* graphics context's coordinate space, and is scaled if
* necessary. Transparent pixels do not affect whatever pixels
* are already there.
* <p>
* This method returns immediately in all cases, even if the
* entire image has not yet been scaled, dithered, and converted
* for the current output device.
* If the current output representation is not yet complete, then
* <code>drawImage</code> returns <code>false</code>. As more of
* the image becomes available, the process that draws the image notifies
* the image observer by calling its <code>imageUpdate</code> method.
* <p>
* A scaled version of an image will not necessarily be
* available immediately just because an unscaled version of the
* image has been constructed for this output device. Each size of
* the image may be cached separately and generated from the original
* data in a separate image production sequence.
* @param img the specified image to be drawn.
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
* @param width the width of the rectangle.
* @param height the height of the rectangle.
* @param observer object to be notified as more of
* the image is converted.
* @see java.awt.Image
* @see java.awt.image.ImageObserver
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
* @since JDK1.0
*/
public boolean drawImage(Image img, int x, int y,
int width, int height,
ImageObserver observer) {
return drawImage(img, x, y, width, height, null, observer);
}
/*
* Draws as much of the specified image as is currently available.
* The image is drawn with its top-left corner at
* (<i>x</i>, <i>y</i>) in this graphics context's coordinate
* space. Transparent pixels are drawn in the specified
* background color.
* <p>
* This operation is equivalent to filling a rectangle of the
* width and height of the specified image with the given color and then
* drawing the image on top of it, but possibly more efficient.
* <p>
* This method returns immediately in all cases, even if the
* complete image has not yet been loaded, and it has not been dithered
* and converted for the current output device.
* <p>
* If the image has not yet been completely loaded, then
* <code>drawImage</code> returns <code>false</code>. As more of
* the image becomes available, the process that draws the image notifies
* the specified image observer.
* @param img the specified image to be drawn.
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
* @param bgcolor the background color to paint under the
* non-opaque portions of the image.
* In this WPathGraphics implementation,
* this parameter can be null in which
* case that background is made a transparent
* white.
* @param observer object to be notified as more of
* the image is converted.
* @see java.awt.Image
* @see java.awt.image.ImageObserver
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
* @since JDK1.0
*/
public boolean drawImage(Image img, int x, int y,
Color bgcolor,
ImageObserver observer) {
boolean result;
int srcWidth = img.getWidth(null);
int srcHeight = img.getHeight(null);
if (srcWidth < 0 || srcHeight < 0) {
result = false;
} else {
result = drawImage(img, x, y, srcWidth, srcHeight, bgcolor, observer);
}
return result;
}
/**
* Draws as much of the specified image as has already been scaled
* to fit inside the specified rectangle.
* <p>
* The image is drawn inside the specified rectangle of this
* graphics context's coordinate space, and is scaled if
* necessary. Transparent pixels are drawn in the specified
* background color.
* This operation is equivalent to filling a rectangle of the
* width and height of the specified image with the given color and then
* drawing the image on top of it, but possibly more efficient.
* <p>
* This method returns immediately in all cases, even if the
* entire image has not yet been scaled, dithered, and converted
* for the current output device.
* If the current output representation is not yet complete then
* <code>drawImage</code> returns <code>false</code>. As more of
* the image becomes available, the process that draws the image notifies
* the specified image observer.
* <p>
* A scaled version of an image will not necessarily be
* available immediately just because an unscaled version of the
* image has been constructed for this output device. Each size of
* the image may be cached separately and generated from the original
* data in a separate image production sequence.
* @param img the specified image to be drawn.
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
* @param width the width of the rectangle.
* @param height the height of the rectangle.
* @param bgcolor the background color to paint under the
* non-opaque portions of the image.
* @param observer object to be notified as more of
* the image is converted.
* @see java.awt.Image
* @see java.awt.image.ImageObserver
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
* @since JDK1.0
*/
public boolean drawImage(Image img, int x, int y,
int width, int height,
Color bgcolor,
ImageObserver observer) {
boolean result;
int srcWidth = img.getWidth(null);
int srcHeight = img.getHeight(null);
if (srcWidth < 0 || srcHeight < 0) {
result = false;
} else {
result = drawImage(img,
x, y, x + width, y + height,
0, 0, srcWidth, srcHeight,
observer);
}
return result;
}
/**
* Draws as much of the specified area of the specified image as is
* currently available, scaling it on the fly to fit inside the
* specified area of the destination drawable surface. Transparent pixels
* do not affect whatever pixels are already there.
* <p>
* This method returns immediately in all cases, even if the
* image area to be drawn has not yet been scaled, dithered, and converted
* for the current output device.
* If the current output representation is not yet complete then
* <code>drawImage</code> returns <code>false</code>. As more of
* the image becomes available, the process that draws the image notifies
* the specified image observer.
* <p>
* This method always uses the unscaled version of the image
* to render the scaled rectangle and performs the required
* scaling on the fly. It does not use a cached, scaled version
* of the image for this operation. Scaling of the image from source
* to destination is performed such that the first coordinate
* of the source rectangle is mapped to the first coordinate of
* the destination rectangle, and the second source coordinate is
* mapped to the second destination coordinate. The subimage is
* scaled and flipped as needed to preserve those mappings.
* @param img the specified image to be drawn
* @param dx1 the <i>x</i> coordinate of the first corner of the
* destination rectangle.
* @param dy1 the <i>y</i> coordinate of the first corner of the
* destination rectangle.
* @param dx2 the <i>x</i> coordinate of the second corner of the
* destination rectangle.
* @param dy2 the <i>y</i> coordinate of the second corner of the
* destination rectangle.
* @param sx1 the <i>x</i> coordinate of the first corner of the
* source rectangle.
* @param sy1 the <i>y</i> coordinate of the first corner of the
* source rectangle.
* @param sx2 the <i>x</i> coordinate of the second corner of the
* source rectangle.
* @param sy2 the <i>y</i> coordinate of the second corner of the
* source rectangle.
* @param observer object to be notified as more of the image is
* scaled and converted.
* @see java.awt.Image
* @see java.awt.image.ImageObserver
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
* @since JDK1.1
*/
public boolean drawImage(Image img,
int dx1, int dy1, int dx2, int dy2,
int sx1, int sy1, int sx2, int sy2,
ImageObserver observer) {
return drawImage(img,
dx1, dy1, dx2, dy2,
sx1, sy1, sx2, sy2,
null, observer);
}
/**
* Draws as much of the specified area of the specified image as is
* currently available, scaling it on the fly to fit inside the
* specified area of the destination drawable surface.
* <p>
* Transparent pixels are drawn in the specified background color.
* This operation is equivalent to filling a rectangle of the
* width and height of the specified image with the given color and then
* drawing the image on top of it, but possibly more efficient.
* <p>
* This method returns immediately in all cases, even if the
* image area to be drawn has not yet been scaled, dithered, and converted
* for the current output device.
* If the current output representation is not yet complete then
* <code>drawImage</code> returns <code>false</code>. As more of
* the image becomes available, the process that draws the image notifies
* the specified image observer.
* <p>
* This method always uses the unscaled version of the image
* to render the scaled rectangle and performs the required
* scaling on the fly. It does not use a cached, scaled version
* of the image for this operation. Scaling of the image from source
* to destination is performed such that the first coordinate
* of the source rectangle is mapped to the first coordinate of
* the destination rectangle, and the second source coordinate is
* mapped to the second destination coordinate. The subimage is
* scaled and flipped as needed to preserve those mappings.
* @param img the specified image to be drawn
* @param dx1 the <i>x</i> coordinate of the first corner of the
* destination rectangle.
* @param dy1 the <i>y</i> coordinate of the first corner of the
* destination rectangle.
* @param dx2 the <i>x</i> coordinate of the second corner of the
* destination rectangle.
* @param dy2 the <i>y</i> coordinate of the second corner of the
* destination rectangle.
* @param sx1 the <i>x</i> coordinate of the first corner of the
* source rectangle.
* @param sy1 the <i>y</i> coordinate of the first corner of the
* source rectangle.
* @param sx2 the <i>x</i> coordinate of the second corner of the
* source rectangle.
* @param sy2 the <i>y</i> coordinate of the second corner of the
* source rectangle.
* @param bgcolor the background color to paint under the
* non-opaque portions of the image.
* @param observer object to be notified as more of the image is
* scaled and converted.
* @see java.awt.Image
* @see java.awt.image.ImageObserver
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
* @since JDK1.1
*/
public boolean drawImage(Image img,
int dx1, int dy1, int dx2, int dy2,
int sx1, int sy1, int sx2, int sy2,
Color bgcolor,
ImageObserver observer) {
int srcWidth = sx2 - sx1;
int srcHeight = sy2 - sy1;
/* Create a transform which describes the changes
* from the source coordinates to the destination
* coordinates. The scaling is determined by the
* ratio of the two rectangles, while the translation
* comes from the difference of their origins.
*/
float scalex = (float) (dx2 - dx1) / srcWidth;
float scaley = (float) (dy2 - dy1) / srcHeight;
AffineTransform xForm
= new AffineTransform(scalex,
0,
0,
scaley,
dx1 - (sx1 * scalex),
dy1 - (sy1 * scaley));
return drawImageToGDI(img, xForm, null, bgcolor,
sx1, sy1, srcWidth, srcHeight, false);
}
/**
* Draws an image, applying a transform from image space into user space
* before drawing.
* The transformation from user space into device space is done with
* the current transform in the Graphics2D.
* The given transformation is applied to the image before the
* transform attribute in the Graphics2D state is applied.
* The rendering attributes applied include the clip, transform,
* and composite attributes. Note that the result is
* undefined, if the given transform is noninvertible.
* @param img The image to be drawn.
* @param xform The transformation from image space into user space.
* @param obs The image observer to be notified as more of the image
* is converted.
* @see #transform
* @see #setTransform
* @see #setComposite
* @see #clip
* @see #setClip
*/
public boolean drawImage(Image img,
AffineTransform xform,
ImageObserver obs) {
boolean result;
int srcWidth = img.getWidth(null);
int srcHeight = img.getHeight(null);
if (srcWidth < 0 || srcHeight < 0) {
result = false;
} else {
result = drawImageToGDI(img, xform,
null, null,
0, 0,
srcWidth, srcHeight, false);
}
return result;
}
/**
* Draws a BufferedImage that is filtered with a BufferedImageOp.
* The rendering attributes applied include the clip, transform
* and composite attributes. This is equivalent to:
* <pre>
* img1 = op.filter(img, null);
* drawImage(img1, new AffineTransform(1f,0f,0f,1f,x,y), null);
* </pre>
* @param op The filter to be applied to the image before drawing.
* @param img The BufferedImage to be drawn.
* @param x,y The location in user space where the image should be drawn.
* @see #transform
* @see #setTransform
* @see #setComposite
* @see #clip
* @see #setClip
*/
public void drawImage(BufferedImage img,
BufferedImageOp op,
int x,
int y) {
boolean result;
int srcWidth = img.getWidth(null);
int srcHeight = img.getHeight(null);
if (op != null) {
img = op.filter(img, null);
}
if (srcWidth < 0 || srcHeight < 0) {
result = false;
} else {
AffineTransform xform = new AffineTransform(1f,0f,0f,1f,x,y);
result = drawImageToGDI(img, xform,
null, null,
0, 0,
srcWidth, srcHeight, false);
}
}
/**
* Draws an image, applying a transform from image space into user space
* before drawing.
* The transformation from user space into device space is done with
* the current transform in the Graphics2D.
* The given transformation is applied to the image before the
* transform attribute in the Graphics2D state is applied.
* The rendering attributes applied include the clip, transform,
* and composite attributes. Note that the result is
* undefined, if the given transform is noninvertible.
* @param img The image to be drawn.
* @param xform The transformation from image space into user space.
* @see #transform
* @see #setTransform
* @see #setComposite
* @see #clip
* @see #setClip
*/
public void drawRenderedImage(RenderedImage img,
AffineTransform xform) {
BufferedImage bufferedImage = null;
int srcWidth = img.getWidth();
int srcHeight = img.getHeight();
if (img instanceof BufferedImage) {
bufferedImage = (BufferedImage) img;
} else {
bufferedImage = new BufferedImage(srcWidth, srcHeight,
BufferedImage.TYPE_INT_ARGB);
Graphics2D imageGraphics = bufferedImage.createGraphics();
imageGraphics.drawRenderedImage(img, xform);
}
drawImageToGDI(bufferedImage, xform,
null, null,
0, 0, srcWidth, srcHeight, false);
}
/* An optimisation for the special case of ICM images which have
* bitmask transparency.
*/
private boolean drawBitmaskImage(Image img,
AffineTransform xform,
BufferedImageOp op, Color bgcolor,
int srcX, int srcY,
int srcWidth, int srcHeight) {
ColorModel colorModel;
IndexColorModel icm;
BufferedImage bufferedImage;
int [] pixels;
/* first do a set of checks to see if this is something we
* can handle in this method. If not return false.
*/
if (img instanceof BufferedImage) {
bufferedImage = (BufferedImage) img;
colorModel = bufferedImage.getColorModel();
} else if (img instanceof WImage) {
WImage wImage = (WImage) img;
bufferedImage = wImage.getBufferedImage();
if (bufferedImage == null) {
return true;
}
colorModel = wImage.getColorModel();
} else if (img instanceof java.awt.image.VolatileImage) {
/* in 1.4 VolatileImage is always opaque so should not reach here
* for that case. The code here to deal with that case is
* basically a safeguard in 1.4, but may be invoked in 1.5
*/
bufferedImage = ((java.awt.image.VolatileImage)img).getSnapshot();
colorModel = bufferedImage.getColorModel();
} else {
return false;
}
if (!(colorModel instanceof IndexColorModel)) {
return false;
} else {
icm = (IndexColorModel)colorModel;
}
if (colorModel.getTransparency() != ColorModel.BITMASK) {
return false;
}
if (op != null) {
return false;
}
// to be compatible with 1.1 printing which treated b/g colors
// with alpha 128 as opaque
if (bgcolor != null && bgcolor.getAlpha() < 128) {
return false;
}
if ((xform.getType()
& ~( AffineTransform.TYPE_UNIFORM_SCALE
| AffineTransform.TYPE_TRANSLATION
| AffineTransform.TYPE_QUADRANT_ROTATION
)) != 0) {
return false;
}
if ((getTransform().getType()
& ~( AffineTransform.TYPE_UNIFORM_SCALE
| AffineTransform.TYPE_TRANSLATION
| AffineTransform.TYPE_QUADRANT_ROTATION
)) != 0) {
return false;
}
BufferedImage subImage = null;
Raster raster = bufferedImage.getRaster();
int transpixel = icm.getTransparentPixel();
byte[] alphas = new byte[icm.getMapSize()];
icm.getAlphas(alphas);
if (transpixel >= 0) {
alphas[transpixel] = 0;
}
/* don't just use srcWidth & srcHeight from application - they
* may exceed the extent of the image - may need to clip.
* The image xform will ensure that points are still mapped properly.
*/
int rw = raster.getWidth();
int rh = raster.getHeight();
if (srcX > rw || srcY > rh) {
return false;
}
int right, bottom, wid, hgt;
if (srcX+srcWidth > rw) {
right = rw;
wid = right - srcX;
} else {
right = srcX+srcWidth;
wid = srcWidth;
}
if (srcY+srcHeight > rh) {
bottom = rh;
hgt = bottom - srcY;
} else {
bottom = srcY+srcHeight;
hgt = srcHeight;
}
pixels = new int[wid];
for (int j=srcY; j<bottom; j++) {
int startx = -1;
raster.getPixels(srcX, j, wid, 1, pixels);
for (int i=srcX; i<right; i++) {
if (alphas[pixels[i-srcX]] == 0) {
if (startx >=0) {
subImage = bufferedImage.getSubimage(startx, j,
i-startx, 1);
xform.translate(startx, j);
drawImageToGDI(subImage, xform, op, bgcolor,
0, 0, i-startx, 1, true);
xform.translate(-startx, -j);
startx = -1;
}
} else if (startx < 0) {
startx = i;
}
}
if (startx >= 0) {
subImage = bufferedImage.getSubimage(startx, j,
right - startx, 1);
xform.translate(startx, j);
drawImageToGDI(subImage, xform, op, bgcolor,
0, 0, right - startx, 1, true);
xform.translate(-startx, -j);
}
}
return true;
}
/**
* The various <code>drawImage()</code> methods for
* <code>WPathGraphics</code> are all decomposed
* into an invocation of <code>drawImageToGDI</code>.
* The portion of the passed in image defined by
* <code>srcX, srcY, srcWidth, and srcHeight</code>
* is transformed by the supplied AffineTransform and
* drawn using GDI to the printer context.
*
* @param img The image to be drawn.
* @param xform Used to tranform the image before drawing.
* This can be null.
* @param op Specifies an image operator to be used when
* drawing the image. This parameter can be null.
* @param bgcolor This color is drawn where the image has transparent
* pixels. If this parameter is null then the
* pixels already in the destination should show
* through.
* @param srcX With srcY this defines the upper-left corner
* of the portion of the image to be drawn.
*
* @param srcY With srcX this defines the upper-left corner
* of the portion of the image to be drawn.
* @param srcWidth The width of the portion of the image to
* be drawn.
* @param srcHeight The height of the portion of the image to
* be drawn.
* @param handlingTransparency if being recursively called to
* print opaque region of transparent image
*/
private boolean drawImageToGDI(Image img, AffineTransform xform,
BufferedImageOp op, Color bgcolor,
int srcX, int srcY,
int srcWidth, int srcHeight,
boolean handlingTransparency) {
if (img instanceof WImage) {
WImage wImage = (WImage) img;
if (wImage.getBufferedImage() == null) {
return false;
}
}
WPrinterJob wPrinterJob = (WPrinterJob) getPrinterJob();
/* The full transform to be applied to the image is the
* caller's transform concatenated on to the transform
* from user space to device space. If the caller didn't
* supply a transform then we just act as if they passed
* in the identify transform.
*/
AffineTransform fullTransform = getTransform();
if (xform == null) {
xform = new AffineTransform();
}
fullTransform.concatenate(xform);
/* Split the full transform into a pair of
* transforms. The first transform holds effects
* that GDI (under Win95) can not perform such
* as rotation and shearing. The second transform
* is setup to hold only the scaling effects.
* These transforms are created such that a point,
* p, in user space, when transformed by 'fullTransform'
* lands in the same place as when it is transformed
* by 'rotTransform' and then 'scaleTransform'.
*
* The entire image transformation is not in Java in order
* to minimize the amount of memory needed in the VM. By
* dividing the transform in two, we rotate and shear
* the source image in its own space and only go to
* the, usually, larger, device space when we ask
* GDI to perform the final scaling.
*/
double[] fullMatrix = new double[6];
fullTransform.getMatrix(fullMatrix);
/* Calculate the amount of scaling in the x
* and y directions. This scaling is computed by
* transforming a unit vector along each axis
* and computing the resulting magnitude.
* The computed values 'scaleX' and 'scaleY'
* represent the amount of scaling GDI will be asked
* to perform.
*/
Point2D.Float unitVectorX = new Point2D.Float(1, 0);
Point2D.Float unitVectorY = new Point2D.Float(0, 1);
fullTransform.deltaTransform(unitVectorX, unitVectorX);
fullTransform.deltaTransform(unitVectorY, unitVectorY);
Point2D.Float origin = new Point2D.Float(0, 0);
double scaleX = unitVectorX.distance(origin);
double scaleY = unitVectorY.distance(origin);
/* We do not need to draw anything if either scaling
* factor is zero.
*/
if (scaleX != 0 && scaleY != 0) {
/* Here's the transformation we will do with Java2D,
*/
fullMatrix[0] /= scaleX; //m00
fullMatrix[1] /= scaleY; //m10
fullMatrix[2] /= scaleX; //m01
fullMatrix[3] /= scaleY; //m11
fullMatrix[4] /= scaleX; //m02
fullMatrix[5] /= scaleY; //m12
for (int i = 0; i < 6; i++) {
double val = Math.floor(fullMatrix[i] + 0.5);
if (Math.abs(fullMatrix[i] - val) < 0.0001) {
fullMatrix[i] = val;
}
}
AffineTransform rotTransform = new AffineTransform(fullMatrix);
/* The scale transform is not used directly: we instead
* directly multiply by scaleX and scaleY.
*
* Conceptually here is what the scaleTransform is:
*
* AffineTransform scaleTransform = new AffineTransform(
* scaleX, //m00
* 0, //m10
* 0, //m01
* scaleY, //m11
* 0, //m02
* 0); //m12
*/
/* Convert the image source's rectangle into the rotated
* and sheared space. Once there, we calculate a rectangle
* that encloses the resulting shape. It is this rectangle
* which defines the size of the BufferedImage we need to
* create to hold the transformed image.
*/
Rectangle2D.Float srcRect = new Rectangle2D.Float(srcX, srcY,
srcWidth,
srcHeight);
Shape rotShape = rotTransform.createTransformedShape(srcRect);
Rectangle2D rotBounds = rotShape.getBounds2D();
/* add a fudge factor as some fp precision problems have
* been observed which caused pixels to be rounded down and
* out of the image.
*/
rotBounds.setRect(rotBounds.getX(), rotBounds.getY(),
rotBounds.getWidth()+0.001,
rotBounds.getHeight()+0.001);
int boundsWidth = (int) rotBounds.getWidth();
int boundsHeight = (int) rotBounds.getHeight();
if (boundsWidth > 0 && boundsHeight > 0) {
/* If the image has transparent or semi-transparent
* pixels then we'll have the application re-render
* the portion of the page covered by the image.
* The BufferedImage will be at the image's resolution
* to avoid wasting memory. By re-rendering this portion
* of a page all compositing is done by Java2D into
* the BufferedImage and then that image is copied to
* GDI.
* However several special cases can be handled otherwise:
* - bitmask transparency with a solid background colour
* - images which have transparency color models but no
* transparent pixels
* - images with bitmask transparency and an IndexColorModel
* (the common transparent GIF case) can be handled by
* rendering just the opaque pixels.
*/
boolean drawOpaque = true;
if (!handlingTransparency && hasTransparentPixels(img)) {
drawOpaque = false;
if (isBitmaskTransparency(img)) {
if (bgcolor == null) {
if (drawBitmaskImage(img, xform, op, bgcolor,
srcX, srcY,
srcWidth, srcHeight)) {
// image drawn, just return.
return true;
}
} else if (bgcolor.getTransparency()
== Transparency.OPAQUE) {
drawOpaque = true;
}
}
if (!canDoRedraws()) {
drawOpaque = true;
}
} else {
// if there's no transparent pixels there's no need
// for a background colour. This can avoid edge artifacts
// in rotation cases.
bgcolor = null;
}
// if src region extends beyond the image, the "opaque" path
// may blit b/g colour (including white) where it shoudn't.
if ((srcX+srcWidth > img.getWidth(null) ||
srcY+srcHeight > img.getHeight(null))
&& canDoRedraws()) {
drawOpaque = false;
}
if (drawOpaque == false) {
wPrinterJob.saveState(getTransform(), getClip(),
rotBounds, scaleX, scaleY,
srcRect, xform);
return true;
/* The image can be rendered directly by GDI so we
* copy it into a BufferedImage (this takes care of
* ColorSpace and BufferedImageOp issues) and then
* send that to GDI.
*/
} else {
/* Create a buffered image big enough to hold the portion
* of the source image being printed.
*/
BufferedImage deepImage = new BufferedImage(
(int) rotBounds.getWidth(),
(int) rotBounds.getHeight(),
BufferedImage.TYPE_3BYTE_BGR);
/* Setup a Graphics2D on to the BufferedImage so that the
* source image when copied, lands within the image buffer.
*/
Graphics2D imageGraphics = deepImage.createGraphics();
imageGraphics.clipRect(0, 0,
deepImage.getWidth(),
deepImage.getHeight());
imageGraphics.translate(-rotBounds.getX(),
-rotBounds.getY());
imageGraphics.transform(rotTransform);
/* Fill the BufferedImage either with the caller supplied
* color, 'bgColor' or, if null, with white.
*/
if (bgcolor == null) {
bgcolor = Color.white;
}
imageGraphics.drawImage(img,
srcX, srcY,
srcX + srcWidth, srcY + srcHeight,
srcX, srcY,
srcX + srcWidth, srcY + srcHeight,
bgcolor, null);
/* Because the caller's image has been rotated
* and sheared into our BufferedImage and because
* we will be handing that BufferedImage directly to
* GDI, we need to set an additional clip. This clip
* makes sure that only parts of the BufferedImage
* that are also part of the caller's image are drawn.
*/
Shape holdClip = getClip();
clip(xform.createTransformedShape(srcRect));
deviceClip(getClip().getPathIterator(getTransform()));
/* Scale the bounding rectangle by the scale transform.
* Because the scaling transform has only x and y
* scaling components it is equivalent to multiply
* the x components of the bounding rectangle by
* the x scaling factor and to multiply the y components
* by the y scaling factor.
*/
Rectangle2D.Float scaledBounds
= new Rectangle2D.Float(
(float) (rotBounds.getX() * scaleX),
(float) (rotBounds.getY() * scaleY),
(float) (rotBounds.getWidth() * scaleX),
(float) (rotBounds.getHeight() * scaleY));
/* Pull the raster data from the buffered image
* and pass it along to GDI.
*/
ByteComponentRaster tile
= (ByteComponentRaster)deepImage.getRaster();
wPrinterJob.drawImage3ByteBGR(tile.getDataStorage(),
scaledBounds.x, scaledBounds.y,
(float)Math.rint(scaledBounds.width+0.5),
(float)Math.rint(scaledBounds.height+0.5),
0f, 0f,
deepImage.getWidth(), deepImage.getHeight());
imageGraphics.dispose();
setClip(holdClip);
}
}
}
return true;
}
/**
* Return true of the Image <code>img</code> has non-opaque
* bits in it and therefore can not be directly rendered by
* GDI. Return false if the image is opaque. If this function
* can not tell for sure whether the image has transparent
* pixels then it assumes that is does.
*/
private boolean hasTransparentPixels(Image img) {
boolean hasTransparency = true;
BufferedImage bufferedImage = null;
ColorModel colorModel;
if (img instanceof BufferedImage) {
bufferedImage = (BufferedImage) img;
colorModel = bufferedImage.getColorModel();
} else if (img instanceof WImage) {
WImage wImage = (WImage) img;
bufferedImage = wImage.getBufferedImage();
if (bufferedImage == null) {
return false;
}
colorModel = wImage.getColorModel();
} else if (img instanceof java.awt.image.VolatileImage) {
// in 1.4 is always opaque - revisit this in 1.5
return false;
} else {
colorModel = null;
}
hasTransparency = colorModel == null
? true
: colorModel.getTransparency() != ColorModel.OPAQUE;
/*
* For the default INT ARGB check the image to see if any pixels are
* really transparent. If there are no transparent pixels then the
* transparency of the color model can be ignored.
* We assume that IndexColorModel images have already been
* checked for transparency and will be OPAQUE unless they actually
* have transparent pixels present.
*/
if (hasTransparency && bufferedImage != null) {
if (bufferedImage.getType()==BufferedImage.TYPE_INT_ARGB) {
DataBuffer db = bufferedImage.getRaster().getDataBuffer();
SampleModel sm = bufferedImage.getRaster().getSampleModel();
if (db instanceof DataBufferInt &&
sm instanceof SinglePixelPackedSampleModel) {
SinglePixelPackedSampleModel psm =
(SinglePixelPackedSampleModel)sm;
int[] int_data = ((DataBufferInt)db).getData();
int x = bufferedImage.getMinX();
int y = bufferedImage.getMinY();
int w = bufferedImage.getWidth();
int h = bufferedImage.getHeight();
int stride = psm.getScanlineStride();
boolean hastranspixel = false;
for (int j = y; j < y+h; j++) {
int yoff = y * stride;
for (int i = x; i < x+w; i++) {
if ((int_data[yoff+i] & 0xff000000)!=0xff000000 ) {
hastranspixel = true;
break;
}
}
if (hastranspixel) {
break;
}
}
if (hastranspixel == false) {
hasTransparency = false;
}
}
}
}
return hasTransparency;
}
private boolean isBitmaskTransparency(Image img) {
ColorModel colorModel = null;
if (img instanceof BufferedImage) {
BufferedImage bufferedImage = (BufferedImage) img;
colorModel = bufferedImage.getColorModel();
} else if (img instanceof WImage) {
WImage wImage = (WImage) img;
colorModel = wImage.getColorModel();
} else if (img instanceof java.awt.image.VolatileImage) {
// in 1.4 VolatileImage is always opaque
return false;
}
return (colorModel != null &&
colorModel.getTransparency() == ColorModel.BITMASK);
}
/**
* Have the printing application redraw everything that falls
* within the page bounds defined by <code>region</code>.
*/
public void redrawRegion(Rectangle2D region, double scaleX, double scaleY,
Rectangle2D srcRect, AffineTransform xform)
throws PrinterException {
WPrinterJob wPrinterJob = (WPrinterJob)getPrinterJob();
Printable painter = getPrintable();
PageFormat pageFormat = getPageFormat();
int pageIndex = getPageIndex();
/* Create a buffered image big enough to hold the portion
* of the source image being printed.
*/
BufferedImage deepImage = new BufferedImage(
(int) region.getWidth(),
(int) region.getHeight(),
BufferedImage.TYPE_3BYTE_BGR);
/* Get a graphics for the application to render into.
* We initialize the buffer to white in order to
* match the paper and then we shift the BufferedImage
* so that it covers the area on the page where the
* caller's Image will be drawn.
*/
Graphics2D g = deepImage.createGraphics();
ProxyGraphics2D proxy = new ProxyGraphics2D(g, wPrinterJob);
proxy.setColor(Color.white);
proxy.fillRect(0, 0, deepImage.getWidth(), deepImage.getHeight());
proxy.clipRect(0, 0, deepImage.getWidth(), deepImage.getHeight());
proxy.translate(-region.getX(), -region.getY());
/* Calculate the resolution of the source image.
*/
float sourceResX = (float)(wPrinterJob.getXRes() / scaleX);
float sourceResY = (float)(wPrinterJob.getYRes() / scaleY);
/* The application expects to see user space at 72 dpi.
* so change user space from image source resolution to
* 72 dpi.
*/
proxy.scale(sourceResX / DEFAULT_USER_RES,
sourceResY / DEFAULT_USER_RES);
proxy.translate(
-wPrinterJob.getPhysicalPrintableX(pageFormat.getPaper())
/ wPrinterJob.getXRes() * DEFAULT_USER_RES,
-wPrinterJob.getPhysicalPrintableY(pageFormat.getPaper())
/ wPrinterJob.getYRes() * DEFAULT_USER_RES);
proxy.transform(new AffineTransform(getPageFormat().getMatrix()));
proxy.setPaint(Color.black);
painter.print(proxy, pageFormat, pageIndex);
g.dispose();
/* Because the caller's image has been rotated
* and sheared into our BufferedImage and because
* we will be handing that BufferedImage directly to
* GDI, we need to set an additional clip. This clip
* makes sure that only parts of the BufferedImage
* that are also part of the caller's image are drawn.
*/
//Shape holdClip = getClip();
clip(xform.createTransformedShape(srcRect));
deviceClip(getClip().getPathIterator(getTransform()));
/* Scale the bounding rectangle by the scale transform.
* Because the scaling transform has only x and y
* scaling components it is equivalent to multiplying
* the x components of the bounding rectangle by
* the x scaling factor and to multiplying the y components
* by the y scaling factor.
*/
Rectangle2D.Float scaledBounds
= new Rectangle2D.Float(
(float) (region.getX() * scaleX),
(float) (region.getY() * scaleY),
(float) (region.getWidth() * scaleX),
(float) (region.getHeight() * scaleY));
/* Pull the raster data from the buffered image
* and pass it along to GDI.
*/
ByteComponentRaster tile
= (ByteComponentRaster)deepImage.getRaster();
wPrinterJob.drawImage3ByteBGR(tile.getDataStorage(),
scaledBounds.x, scaledBounds.y,
scaledBounds.width,
scaledBounds.height,
0f, 0f,
deepImage.getWidth(), deepImage.getHeight());
//setClip(holdClip);
}
/*
* Fill the path defined by <code>pathIter</code>
* with the specified color.
* The path is provided in device coordinates.
*/
protected void deviceFill(PathIterator pathIter, Color color) {
WPrinterJob wPrinterJob = (WPrinterJob) getPrinterJob();
convertToWPath(pathIter);
wPrinterJob.selectSolidBrush(color);
wPrinterJob.fillPath();
}
/*
* Set the printer device's clip to be the
* path defined by <code>pathIter</code>
* The path is provided in device coordinates.
*/
protected void deviceClip(PathIterator pathIter) {
WPrinterJob wPrinterJob = (WPrinterJob) getPrinterJob();
convertToWPath(pathIter);
wPrinterJob.selectClipPath();
}
/**
* Draw the bounding rectangle using transformed coordinates.
*/
protected void deviceFrameRect(int x, int y, int width, int height,
Color color) {
AffineTransform deviceTransform = getTransform();
/* check if rotated or sheared */
int transformType = deviceTransform.getType();
boolean usePath = ((transformType &
(AffineTransform.TYPE_GENERAL_ROTATION |
AffineTransform.TYPE_GENERAL_TRANSFORM)) != 0);
if (usePath) {
draw(new Rectangle2D.Float(x, y, width, height));
return;
}
Stroke stroke = getStroke();
if (stroke instanceof BasicStroke) {
BasicStroke lineStroke = (BasicStroke) stroke;
int endCap = lineStroke.getEndCap();
int lineJoin = lineStroke.getLineJoin();
/* check for default style and try to optimize it by
* calling the frameRect native function instead of using paths.
*/
if ((endCap == BasicStroke.CAP_SQUARE) &&
(lineJoin == BasicStroke.JOIN_MITER) &&
(lineStroke.getMiterLimit() ==10.0f)) {
float lineWidth = lineStroke.getLineWidth();
Point2D.Float penSize = new Point2D.Float(lineWidth,
lineWidth);
deviceTransform.deltaTransform(penSize, penSize);
float deviceLineWidth = Math.min(Math.abs(penSize.x),
Math.abs(penSize.y));
/* transform upper left coordinate */
Point2D.Float ul_pos = new Point2D.Float(x, y);
deviceTransform.transform(ul_pos, ul_pos);
/* transform lower right coordinate */
Point2D.Float lr_pos = new Point2D.Float(x + width,
y + height);
deviceTransform.transform(lr_pos, lr_pos);
float w = (float) (lr_pos.getX() - ul_pos.getX());
float h = (float)(lr_pos.getY() - ul_pos.getY());
WPrinterJob wPrinterJob = (WPrinterJob) getPrinterJob();
/* use selectStylePen, if supported */
if (wPrinterJob.selectStylePen(endCap, lineJoin,
deviceLineWidth, color) == true) {
wPrinterJob.frameRect((float)ul_pos.getX(),
(float)ul_pos.getY(), w, h);
}
/* not supported, must be a Win 9x */
else {
double lowerRes = Math.min(wPrinterJob.getXRes(),
wPrinterJob.getYRes());
if ((deviceLineWidth/lowerRes) < MAX_THINLINE_INCHES) {
/* use the default pen styles for thin pens. */
wPrinterJob.selectPen(deviceLineWidth, color);
wPrinterJob.frameRect((float)ul_pos.getX(),
(float)ul_pos.getY(), w, h);
}
else {
draw(new Rectangle2D.Float(x, y, width, height));
}
}
}
else {
draw(new Rectangle2D.Float(x, y, width, height));
}
}
}
/*
* Fill the rectangle with specified color and using Windows'
* GDI fillRect function.
* Boundaries are determined by the given coordinates.
*/
protected void deviceFillRect(int x, int y, int width, int height,
Color color) {
/*
* Transform to device coordinates
*/
AffineTransform deviceTransform = getTransform();
/* check if rotated or sheared */
int transformType = deviceTransform.getType();
boolean usePath = ((transformType &
(AffineTransform.TYPE_GENERAL_ROTATION |
AffineTransform.TYPE_GENERAL_TRANSFORM)) != 0);
if (usePath) {
fill(new Rectangle2D.Float(x, y, width, height));
return;
}
Point2D.Float tlc_pos = new Point2D.Float(x, y);
deviceTransform.transform(tlc_pos, tlc_pos);
Point2D.Float brc_pos = new Point2D.Float(x+width, y+height);
deviceTransform.transform(brc_pos, brc_pos);
float deviceWidth = (float) (brc_pos.getX() - tlc_pos.getX());
float deviceHeight = (float)(brc_pos.getY() - tlc_pos.getY());
WPrinterJob wPrinterJob = (WPrinterJob) getPrinterJob();
wPrinterJob.fillRect((float)tlc_pos.getX(), (float)tlc_pos.getY(),
deviceWidth, deviceHeight, color);
}
/**
* Draw a line using a pen created using the specified color
* and current stroke properties.
*/
protected void deviceDrawLine(int xBegin, int yBegin, int xEnd, int yEnd,
Color color) {
Stroke stroke = getStroke();
if (stroke instanceof BasicStroke) {
BasicStroke lineStroke = (BasicStroke) stroke;
if (lineStroke.getDashArray() != null) {
draw(new Line2D.Float(xBegin, yBegin, xEnd, yEnd));
return;
}
float lineWidth = lineStroke.getLineWidth();
Point2D.Float penSize = new Point2D.Float(lineWidth, lineWidth);
AffineTransform deviceTransform = getTransform();
deviceTransform.deltaTransform(penSize, penSize);
float deviceLineWidth = Math.min(Math.abs(penSize.x),
Math.abs(penSize.y));
Point2D.Float begin_pos = new Point2D.Float(xBegin, yBegin);
deviceTransform.transform(begin_pos, begin_pos);
Point2D.Float end_pos = new Point2D.Float(xEnd, yEnd);
deviceTransform.transform(end_pos, end_pos);
int endCap = lineStroke.getEndCap();
int lineJoin = lineStroke.getLineJoin();
/* check if it's a one-pixel line */
if ((end_pos.getX() == begin_pos.getX())
&& (end_pos.getY() == begin_pos.getY())) {
/* endCap other than Round will not print!
* due to Windows GDI limitation, force it to CAP_ROUND
*/
endCap = BasicStroke.CAP_ROUND;
}
WPrinterJob wPrinterJob = (WPrinterJob) getPrinterJob();
/* call native function that creates pen with style */
if (wPrinterJob.selectStylePen(endCap, lineJoin,
deviceLineWidth, color)) {
wPrinterJob.moveTo((float)begin_pos.getX(),
(float)begin_pos.getY());
wPrinterJob.lineTo((float)end_pos.getX(),
(float)end_pos.getY());
}
/* selectStylePen is not supported, must be Win 9X */
else {
/* let's see if we can use a a default pen
* if it's round end (Windows' default style)
* or it's vertical/horizontal
* or stroke is too thin.
*/
double lowerRes = Math.min(wPrinterJob.getXRes(),
wPrinterJob.getYRes());
if ((endCap == BasicStroke.CAP_ROUND) ||
(((xBegin == xEnd) || (yBegin == yEnd)) &&
(deviceLineWidth/lowerRes < MAX_THINLINE_INCHES))) {
wPrinterJob.selectPen(deviceLineWidth, color);
wPrinterJob.moveTo((float)begin_pos.getX(),
(float)begin_pos.getY());
wPrinterJob.lineTo((float)end_pos.getX(),
(float)end_pos.getY());
}
else {
draw(new Line2D.Float(xBegin, yBegin, xEnd, yEnd));
}
}
}
}
/**
* Given a Java2D <code>PathIterator</code> instance,
* this method translates that into a Window's path
* in the printer device context.
*/
private void convertToWPath(PathIterator pathIter) {
float[] segment = new float[6];
int segmentType;
WPrinterJob wPrinterJob = (WPrinterJob) getPrinterJob();
/* Map the PathIterator's fill rule into the Window's
* polygon fill rule.
*/
int polyFillRule;
if (pathIter.getWindingRule() == PathIterator.WIND_EVEN_ODD) {
polyFillRule = WPrinterJob.POLYFILL_ALTERNATE;
} else {
polyFillRule = WPrinterJob.POLYFILL_WINDING;
}
wPrinterJob.setPolyFillMode(polyFillRule);
wPrinterJob.beginPath();
while (pathIter.isDone() == false) {
segmentType = pathIter.currentSegment(segment);
switch (segmentType) {
case PathIterator.SEG_MOVETO:
wPrinterJob.moveTo(segment[0], segment[1]);
break;
case PathIterator.SEG_LINETO:
wPrinterJob.lineTo(segment[0], segment[1]);
break;
/* Convert the quad path to a bezier.
*/
case PathIterator.SEG_QUADTO:
int lastX = wPrinterJob.getPenX();
int lastY = wPrinterJob.getPenY();
float c1x = lastX + (segment[0] - lastX) * 2 / 3;
float c1y = lastY + (segment[1] - lastY) * 2 / 3;
float c2x = segment[2] - (segment[2] - segment[0]) * 2/ 3;
float c2y = segment[3] - (segment[3] - segment[1]) * 2/ 3;
wPrinterJob.polyBezierTo(c1x, c1y,
c2x, c2y,
segment[2], segment[3]);
break;
case PathIterator.SEG_CUBICTO:
wPrinterJob.polyBezierTo(segment[0], segment[1],
segment[2], segment[3],
segment[4], segment[5]);
break;
case PathIterator.SEG_CLOSE:
wPrinterJob.closeFigure();
break;
}
pathIter.next();
}
wPrinterJob.endPath();
}
}