Package weka.clusterers

Examples of weka.clusterers.ClusterEvaluation.evaluateClusterer()


    m_clusterer.buildClusterer(train);
    double numClusters = m_clusterer.numberOfClusters();
    eval.setClusterer(m_clusterer);
    long trainTimeElapsed = System.currentTimeMillis() - trainTimeStart;
    long testTimeStart = System.currentTimeMillis();
    eval.evaluateClusterer(test);
    long testTimeElapsed = System.currentTimeMillis() - testTimeStart;
    //    m_result = eval.toSummaryString();

    // The results stored are all per instance -- can be multiplied by the
    // number of instances to get absolute numbers
View Full Code Here


      ClusterEvaluation eval = new ClusterEvaluation();
      eval.setClusterer(clusterer);
      switch (testMode) {
        case 3: case 5: // Test on training
        m_Log.statusMessage("Clustering training data...");
        eval.evaluateClusterer(trainInst);
        predData = setUpVisualizableInstances(inst,eval);
        outBuff.append("=== Model and evaluation on training set ===\n\n");
        break;

        case 2: // Percent split
View Full Code Here

        Instances test = new Instances(trainInst, trainSize, testSize);
        Instances testVis = new Instances(inst, trainSize, testSize);
        m_Log.statusMessage("Building model on training split...");
        clusterer.buildClusterer(train);
        m_Log.statusMessage("Evaluating on test split...");
        eval.evaluateClusterer(test);
        predData = setUpVisualizableInstances(testVis, eval);
        outBuff.append("=== Model and evaluation on test split ===\n");
        break;
   
        case 4: // Test on user split
View Full Code Here

        m_Log.statusMessage("Evaluating on test data...");
        Instances userTestT = new Instances(userTest);
        if (!m_ignoreKeyList.isSelectionEmpty()) {
    userTestT = removeIgnoreCols(userTestT);
        }
        eval.evaluateClusterer(userTestT);
        predData = setUpVisualizableInstances(userTest, eval);
        outBuff.append("=== Model and evaluation on test set ===\n");
        break;

        default:
View Full Code Here

              Instances userTestT = new Instances(userTest);
              if (ignoredAtts != null) {
                userTestT = removeIgnoreCols(userTestT, ignoredAtts);
              }

              eval.evaluateClusterer(userTestT);
     
              predData = setUpVisualizableInstances(userTest, eval);

              outBuff.append("\n=== Re-evaluation on test set ===\n\n");
              outBuff.append("User supplied test set\n")
View Full Code Here

    m_clusterer.buildClusterer(train);
    double numClusters = m_clusterer.numberOfClusters();
    eval.setClusterer(m_clusterer);
    long trainTimeElapsed = System.currentTimeMillis() - trainTimeStart;
    long testTimeStart = System.currentTimeMillis();
    eval.evaluateClusterer(test);
    long testTimeElapsed = System.currentTimeMillis() - testTimeStart;
    //    m_result = eval.toSummaryString();

    // The results stored are all per instance -- can be multiplied by the
    // number of instances to get absolute numbers
View Full Code Here

      ClusterEvaluation eval = new ClusterEvaluation();
      eval.setClusterer(clusterer);
      switch (testMode) {
        case 3: case 5: // Test on training
        m_Log.statusMessage("Clustering training data...");
        eval.evaluateClusterer(trainInst, "", false);
        plotInstances.setInstances(inst);
        plotInstances.setClusterEvaluation(eval);
        outBuff.append("=== Model and evaluation on training set ===\n\n");
        break;
View Full Code Here

        m_Log.statusMessage("Building model on training split...");
        trainTimeStart = System.currentTimeMillis();
        clusterer.buildClusterer(train);
        trainTimeElapsed = System.currentTimeMillis() - trainTimeStart;
        m_Log.statusMessage("Evaluating on test split...");
        eval.evaluateClusterer(test, "", false);
        plotInstances.setInstances(testVis);
        plotInstances.setClusterEvaluation(eval);
        outBuff.append("=== Model and evaluation on test split ===\n");
        outBuff.append(clusterer.toString() + "\n");
        outBuff.append("\nTime taken to build model (percentage split) : "
View Full Code Here

        m_Log.statusMessage("Evaluating on test data...");
        Instances userTestT = new Instances(userTest);
        if (!m_ignoreKeyList.isSelectionEmpty()) {
    userTestT = removeIgnoreCols(userTestT);
        }
        eval.evaluateClusterer(userTestT, "", false);
        plotInstances.setInstances(userTest);
        plotInstances.setClusterEvaluation(eval);
        outBuff.append("=== Evaluation on test set ===\n");
        break;
View Full Code Here

              Instances userTestT = new Instances(userTest);
              if (ignoredAtts != null) {
                userTestT = removeIgnoreCols(userTestT, ignoredAtts);
              }

              eval.evaluateClusterer(userTestT);
     
              plotInstances.setClusterEvaluation(eval);
              plotInstances.setInstances(userTest);
              plotInstances.setUp();
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.