Examples of walkInOptimizedOrder()


Examples of org.apache.commons.math.linear.RealMatrix.walkInOptimizedOrder()

                               1e-14);
        RealMatrix errors =
            new Array2DRowRealMatrix(regression.estimateRegressionParametersVariance(), false);
        final double[] s = { 1.0, -1.0 2.0, -1.0 3.0, -1.0 4.0, -1.0 5.0, -1.0 6.0 };
        RealMatrix referenceVariance = new Array2DRowRealMatrix(s.length, s.length);
        referenceVariance.walkInOptimizedOrder(new DefaultRealMatrixChangingVisitor() {
            @Override
            public double visit(int row, int column, double value)
                throws MatrixVisitorException {
                if (row == 0) {
                    return s[column];
View Full Code Here

Examples of org.apache.commons.math.linear.RealMatrix.walkInOptimizedOrder()

       
    }

    private RealMatrix createTestMatrix(final Random r, final int rows, final int columns) {
        RealMatrix m = MatrixUtils.createRealMatrix(rows, columns);
        m.walkInOptimizedOrder(new DefaultRealMatrixChangingVisitor(){
            @Override
            public double visit(int row, int column, double value)
                throws MatrixVisitorException {
                return 2.0 * r.nextDouble() - 1.0;
            }
View Full Code Here

Examples of org.apache.commons.math3.linear.Array2DRowRealMatrix.walkInOptimizedOrder()

                }
                nordsieckTmp = updateHighOrderDerivativesPhase1(nordsieck);
                updateHighOrderDerivativesPhase2(scaled, predictedScaled, nordsieckTmp);

                // apply correction (C in the PECE sequence)
                error = nordsieckTmp.walkInOptimizedOrder(new Corrector(y, predictedScaled, yTmp));

                if (error >= 1.0) {
                    // reject the step and attempt to reduce error by stepsize control
                    final double factor = computeStepGrowShrinkFactor(error);
                    hNew = filterStep(stepSize * factor, forward, false);
View Full Code Here

Examples of org.apache.commons.math3.linear.Array2DRowRealMatrix.walkInOptimizedOrder()

                }
                nordsieckTmp = updateHighOrderDerivativesPhase1(nordsieck);
                updateHighOrderDerivativesPhase2(scaled, predictedScaled, nordsieckTmp);

                // apply correction (C in the PECE sequence)
                error = nordsieckTmp.walkInOptimizedOrder(new Corrector(y, predictedScaled, yTmp));

                if (error >= 1.0) {
                    // reject the step and attempt to reduce error by stepsize control
                    final double factor = computeStepGrowShrinkFactor(error);
                    hNew = filterStep(stepSize * factor, forward, false);
View Full Code Here

Examples of org.apache.commons.math3.linear.Array2DRowRealMatrix.walkInOptimizedOrder()

                               1e-14);
        RealMatrix errors =
            new Array2DRowRealMatrix(regression.estimateRegressionParametersVariance(), false);
        final double[] s = { 1.0, -1.0 2.0, -1.0 3.0, -1.0 4.0, -1.0 5.0, -1.0 6.0 };
        RealMatrix referenceVariance = new Array2DRowRealMatrix(s.length, s.length);
        referenceVariance.walkInOptimizedOrder(new DefaultRealMatrixChangingVisitor() {
            @Override
            public double visit(int row, int column, double value) {
                if (row == 0) {
                    return s[column];
                }
View Full Code Here

Examples of org.apache.commons.math3.linear.Array2DRowRealMatrix.walkInOptimizedOrder()

                }
                nordsieckTmp = updateHighOrderDerivativesPhase1(nordsieck);
                updateHighOrderDerivativesPhase2(scaled, predictedScaled, nordsieckTmp);

                // apply correction (C in the PECE sequence)
                error = nordsieckTmp.walkInOptimizedOrder(new Corrector(y, predictedScaled, yTmp));

                if (error >= 1.0) {
                    // reject the step and attempt to reduce error by stepsize control
                    final double factor = computeStepGrowShrinkFactor(error);
                    hNew = filterStep(stepSize * factor, forward, false);
View Full Code Here

Examples of org.apache.commons.math3.linear.Array2DRowRealMatrix.walkInOptimizedOrder()

                }
                nordsieckTmp = updateHighOrderDerivativesPhase1(nordsieck);
                updateHighOrderDerivativesPhase2(scaled, predictedScaled, nordsieckTmp);

                // apply correction (C in the PECE sequence)
                error = nordsieckTmp.walkInOptimizedOrder(new Corrector(y, predictedScaled, yTmp));

                if (error >= 1.0) {
                    // reject the step and attempt to reduce error by stepsize control
                    final double factor = computeStepGrowShrinkFactor(error);
                    hNew = filterStep(stepSize * factor, forward, false);
View Full Code Here

Examples of org.apache.commons.math3.linear.Array2DRowRealMatrix.walkInOptimizedOrder()

                               1e-14);
        RealMatrix errors =
            new Array2DRowRealMatrix(regression.estimateRegressionParametersVariance(), false);
        final double[] s = { 1.0, -1.0 2.0, -1.0 3.0, -1.0 4.0, -1.0 5.0, -1.0 6.0 };
        RealMatrix referenceVariance = new Array2DRowRealMatrix(s.length, s.length);
        referenceVariance.walkInOptimizedOrder(new DefaultRealMatrixChangingVisitor() {
            @Override
            public double visit(int row, int column, double value) {
                if (row == 0) {
                    return s[column];
                }
View Full Code Here

Examples of org.apache.commons.math3.linear.Array2DRowRealMatrix.walkInOptimizedOrder()

                               1e-14);
        RealMatrix errors =
            new Array2DRowRealMatrix(regression.estimateRegressionParametersVariance(), false);
        final double[] s = { 1.0, -1.0 2.0, -1.0 3.0, -1.0 4.0, -1.0 5.0, -1.0 6.0 };
        RealMatrix referenceVariance = new Array2DRowRealMatrix(s.length, s.length);
        referenceVariance.walkInOptimizedOrder(new DefaultRealMatrixChangingVisitor() {
            @Override
            public double visit(int row, int column, double value) {
                if (row == 0) {
                    return s[column];
                }
View Full Code Here

Examples of org.apache.commons.math3.linear.RealMatrix.walkInOptimizedOrder()

                               1e-14);
        RealMatrix errors =
            new Array2DRowRealMatrix(regression.estimateRegressionParametersVariance(), false);
        final double[] s = { 1.0, -1.0 2.0, -1.0 3.0, -1.0 4.0, -1.0 5.0, -1.0 6.0 };
        RealMatrix referenceVariance = new Array2DRowRealMatrix(s.length, s.length);
        referenceVariance.walkInOptimizedOrder(new DefaultRealMatrixChangingVisitor() {
            @Override
            public double visit(int row, int column, double value) {
                if (row == 0) {
                    return s[column];
                }
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.