sb.append(winningNaiveRemove).append("-").append(learnPostSel.numAttributes()-1);
rm.setAttributeIndices(sb.toString());
rm.setInputFormat(learnPostSel);
Instances learnPreRandRemove = rm.useFilter(learnPostSel, rm);
Instances holdPreRandRemove = rm.useFilter(holdPostSel, rm);
wrep.BGS_midAttributeSelectionNumberOfFeatures = learnPreRandRemove.numAttributes();
ev = new Evaluation(learnPreRandRemove);
ev.crossValidateModel(Classifier.makeCopy(bn), learnPreRandRemove,Math.min(CVfoldNum,learn.numInstances()),new Random(winningNaiveRemove));