new double[m_numFoldsPruning][data.numAttributes()][2];
FastVector[] nodeInfo = new FastVector[m_numFoldsPruning];
for (int i = 0; i < m_numFoldsPruning; i++) {
train[i] = cvData.trainCV(m_numFoldsPruning, i);
test[i] = cvData.testCV(m_numFoldsPruning, i);
parallelBFElements[i] = new FastVector();
m_roots[i] = new BFTree();
// calculate sorted indices, weights, initial class counts and total weights for each training data
totalWeight[i] = computeSortedInfo(train[i],sortedIndices[i], weights[i],