Examples of testCV()


Examples of weka.core.Instances.testCV()

      new double[m_numFoldsPruning][data.numAttributes()][2];
    FastVector[] nodeInfo = new FastVector[m_numFoldsPruning];

    for (int i = 0; i < m_numFoldsPruning; i++) {
      train[i] = cvData.trainCV(m_numFoldsPruning, i);
      test[i] = cvData.testCV(m_numFoldsPruning, i);
      parallelBFElements[i] = new FastVector();
      m_roots[i] = new BFTree();

      // calculate sorted indices, weights, initial class counts and total weights for each training data
      totalWeight[i] = computeSortedInfo(train[i],sortedIndices[i], weights[i],
View Full Code Here

Examples of weka.core.Instances.testCV()

      dataCopy.stratify(m_numFolds);
    }

    for (int f = 0; f < m_numFolds; f++) {
      trainData[f] = dataCopy.trainCV(m_numFolds, f, random);
      testData[f] = dataCopy.testCV(m_numFolds, f);
    }

    LFSMethods LSF = new LFSMethods();

    int[] ranking;
View Full Code Here

Examples of weka.core.Instances.testCV()

      dataCopy.stratify(m_numFolds);
    }

    for (int f = 0; f < m_numFolds; f++) {
      trainData[f] = dataCopy.trainCV(m_numFolds, f, random);
      testData[f] = dataCopy.testCV(m_numFolds, f);
    }

    LFSMethods LSF = new LFSMethods();

    int[] ranking;
View Full Code Here

Examples of weka.core.Instances.testCV()

      new double[m_numFoldsPruning][data.numAttributes()][2];
    FastVector[] nodeInfo = new FastVector[m_numFoldsPruning];

    for (int i = 0; i < m_numFoldsPruning; i++) {
      train[i] = cvData.trainCV(m_numFoldsPruning, i);
      test[i] = cvData.testCV(m_numFoldsPruning, i);
      parallelBFElements[i] = new FastVector();
      m_roots[i] = new BFTree();

      // calculate sorted indices, weights, initial class counts and total weights for each training data
      totalWeight[i] = computeSortedInfo(train[i],sortedIndices[i], weights[i],
View Full Code Here

Examples of weka.core.Instances.testCV()

      data.stratify(numFolds);
     
      // Make sure that both subsets contain at least one positive instance
      for (int subsetIndex = 0; subsetIndex < numFolds; subsetIndex++) {
        trainData = data.trainCV(numFolds, subsetIndex, random);
        evalData = data.testCV(numFolds, subsetIndex);
        if (checkForInstance(trainData) && checkForInstance(evalData)) {
          break;
        }
      }
      return eu.getTrainTestPredictions(m_Classifier, trainData, evalData);
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.