Package statechum.analysis.learning

Examples of statechum.analysis.learning.MarkovUniversalLearner.updateMarkov()


  @Test
  public void testUpdateMarkovSideways5()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovUniversalLearner m = new MarkovUniversalLearner(4);
    m.updateMarkov(graph,false,true);
    Assert.assertTrue(m.getMarkov(true).isEmpty());Assert.assertTrue(m.getMarkov(false).isEmpty());
  }

  @Test
  public void testPredictTransitionsSideways1()
View Full Code Here


  @Test
  public void testPredictTransitionsSideways1()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovUniversalLearner m = new MarkovUniversalLearner(2);
    m.updateMarkov(graph,false,true);
    Assert.assertTrue(m.getMarkov(true).isEmpty());
    Assert.assertEquals(9,m.getMarkov(false).size());
   
    Configuration shallowCopy = graph.config.copy();shallowCopy.setLearnerCloneGraph(false);
    Map<Trace, MarkovOutcome> markovMatrix = m.getMarkov(false);
View Full Code Here

  @Test
  public void testPredictTransitionsSideways2()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-b->G","testUpdateMarkovSideways3",config, converter);
    MarkovUniversalLearner m = new MarkovUniversalLearner(2);
    m.updateMarkov(graph,false,true);
    Assert.assertTrue(m.getMarkov(true).isEmpty());
   
    Assert.assertEquals(8,m.getMarkov(false).size());
   
    Assert.assertEquals(MarkovOutcome.failure,m.getMarkov(false).get(new Trace(Arrays.asList(new Label[]{lblB,lblU}),true)));
View Full Code Here

  @Test
  public void testPredictTransitionsFromStatesSideways1()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovUniversalLearner m = new MarkovUniversalLearner(2);
    m.updateMarkov(graph,false,true);
    Assert.assertTrue(m.getMarkov(true).isEmpty());
    Assert.assertEquals(9,m.getMarkov(false).size());
   
    final LearnerGraph graph2 = FsmParser.buildLearnerGraph("A-a->B / A-c->A","testCheckFanoutInconsistencySideways4",config, converter);
    Map<Trace, MarkovOutcome> markovMatrix = m.getMarkov(false);
View Full Code Here

  @Test
  public void testPredictTransitionsFromStatesForward1()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovUniversalLearner m = new MarkovUniversalLearner(2);
    m.updateMarkov(graph,false,true);
    Assert.assertTrue(m.getMarkov(true).isEmpty());
    Assert.assertEquals(9,m.getMarkov(false).size());
   
    final LearnerGraph graph2 = FsmParser.buildLearnerGraph("A-a->B / A-c->A","testCheckFanoutInconsistencySideways4",config, converter);
    Map<CmpVertex, Map<Label, MarkovOutcome>> predictions = m.predictTransitions(graph2,true);
View Full Code Here

  @Test
  public void testPredictTransitionsFromStatesForward2a()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovUniversalLearner m = new MarkovUniversalLearner(2);
    m.updateMarkov(graph,true,true);
    Assert.assertEquals(4,m.getMarkov(true).size());
    Assert.assertTrue(m.getMarkov(false).isEmpty());
   
    final LearnerGraph graph2 = FsmParser.buildLearnerGraph("A-a->B / A-c->A/ T-u->T-b->T","testPredictTransitionsFromStatesForward2",config, converter);
    Map<CmpVertex, Map<Label, MarkovOutcome>> predictions = m.predictTransitions(graph2,true);
View Full Code Here

  @Test
  public void testPredictTransitionsFromStatesForward2b()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovUniversalLearner m = new MarkovUniversalLearner(2);
    m.updateMarkov(graph,true,true);
    Assert.assertEquals(4,m.getMarkov(true).size());
    Assert.assertTrue(m.getMarkov(false).isEmpty());
   
    final LearnerGraph graph2 = new LearnerGraph(config);graph2.getInit().setAccept(false);
    Map<CmpVertex, Map<Label, MarkovOutcome>> predictions = m.predictTransitions(graph2,true);
View Full Code Here

  @Test
  public void testPredictTransitionsFromStatesForward3()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovUniversalLearner m = new MarkovUniversalLearner(2);
    m.updateMarkov(graph,true,true);
    Assert.assertEquals(4,m.getMarkov(true).size());
    Assert.assertTrue(m.getMarkov(false).isEmpty());
   
    final LearnerGraph graph2 = FsmParser.buildLearnerGraph("A-a->B / A-c->A/ T-a->T-u->T-b->T","testPredictTransitionsFromStatesForward2",config, converter);
    m.constructMarkovTentative(graph2, true);
View Full Code Here

  @Test
  public void testPredictTransitionsFromStatesSideways2()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovUniversalLearner m = new MarkovUniversalLearner(2);
    m.updateMarkov(graph,false,true);
    Assert.assertTrue(m.getMarkov(true).isEmpty());
    Assert.assertEquals(9,m.getMarkov(false).size());
   
    final LearnerGraph graph2 = FsmParser.buildLearnerGraph("A-a->B","testCheckFanoutInconsistencySideways4",config, converter);
    m.constructMarkovTentative(graph2, false);
View Full Code Here

  @Test
  public void testPredictTransitionsFromStatesSideways3()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovUniversalLearner m = new MarkovUniversalLearner(2);
    m.updateMarkov(graph,false,true);
    Assert.assertTrue(m.getMarkov(true).isEmpty());
    Assert.assertEquals(9,m.getMarkov(false).size());
   
    final LearnerGraph graph2 = FsmParser.buildLearnerGraph("A-a->B / T-a->T-u->T-b->T-c->T","testPredictTransitionsFromStatesSideways3",config, converter);
    m.constructMarkovTentative(graph2, false);
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.