Package statechum.analysis.learning

Examples of statechum.analysis.learning.MarkovModel.createMarkovLearner()


  @Test
  public void testConstructExtendedGraph7()
  {
    MarkovModel m = new MarkovModel(2,true,true);
    Set<List<Label>> plusStrings = buildSet(new String[][] { new String[]{"a","b"},new String[]{"c","u"} },config,converter), minusStrings = buildSet(new String[][] { new String[]{"a","u"} },config,converter);
    m.createMarkovLearner(plusStrings, minusStrings,false);
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B / A-c->B-c->Z / T-b->T-u->T","testConstructExtendedGraph7a",config, converter);
    MarkovClassifier cl = new MarkovClassifier(m,graph);
    Map<CmpVertex, Map<Label, MarkovOutcome>> newTransitions = cl.predictTransitions();
   
    Assert.assertEquals(2,newTransitions.size());
View Full Code Here


  @Test
  public void testCheckFanoutInconsistency1d()
  {
    MarkovModel m = new MarkovModel(2,true,true);
    Set<List<Label>> plusStrings = buildSet(new String[][] { new String[]{"a","b"},new String[]{"c","u"} },config,converter), minusStrings = buildSet(new String[][] { new String[]{"a","u"}},config,converter);
    m.createMarkovLearner(plusStrings, minusStrings,false);
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B / A-c->B / B-d->F / T-b->T-u->T-d->T","testCheckFanoutInconsistency1d",config, converter);
   
    Assert.assertEquals(1,new MarkovClassifier(m,graph).checkFanoutInconsistency(graph.findVertex("B"),new MarkovClassifier.DifferentPredictionsInconsistency()));
  }
 
View Full Code Here

  @Test
  public void testCheckFanoutInconsistency1e()
  {
    MarkovModel m = new MarkovModel(2,true,true);
    Set<List<Label>> plusStrings = buildSet(new String[][] { new String[]{"a","b"},new String[]{"c","u"} },config,converter), minusStrings = buildSet(new String[][] { new String[]{"a","u"}},config,converter);
    m.createMarkovLearner(plusStrings, minusStrings,false);
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B / A-c->B / B-b-#F / T-b->T-u->T-d->T","testCheckFanoutInconsistency1e",config, converter);
   
    Assert.assertEquals(1,new MarkovClassifier(m,graph).checkFanoutInconsistency(graph.findVertex("B"),new MarkovClassifier.DifferentPredictionsInconsistency()));
  }
 
View Full Code Here

  @Test
  public void testCheckFanoutInconsistency1a()
  {
    MarkovModel m = new MarkovModel(2,true,true);
    Set<List<Label>> plusStrings = buildSet(new String[][] { new String[]{"a","b"},new String[]{"c","u"} },config,converter), minusStrings = buildSet(new String[][] { new String[]{"a","u"} },config,converter);
    m.createMarkovLearner(plusStrings, minusStrings,false);
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B / A-c->B / T-b->T-u->T","testCheckFanoutInconsistency1a",config, converter);
   
    Assert.assertEquals(0,new MarkovClassifier(m,graph).checkFanoutInconsistency(graph.findVertex("B"),new MarkovClassifier.DifferentPredictionsInconsistency()));
  }
 
View Full Code Here

  @Test
  public void testCheckFanoutInconsistency1f()
  {
    MarkovModel m = new MarkovModel(2,true,true);
    Set<List<Label>> plusStrings = buildSet(new String[][] { new String[]{"a","b"},new String[]{"c","u"} },config,converter), minusStrings = buildSet(new String[][] { new String[]{"a","u"} },config,converter);
    m.createMarkovLearner(plusStrings, minusStrings,false);
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B / A-c->B / B-d-#F / T-b->T-u->T-d->T","testCheckFanoutInconsistency1f",config, converter);
   
    Assert.assertEquals(1,new MarkovClassifier(m,graph).checkFanoutInconsistency(graph.findVertex("B"),new MarkovClassifier.DifferentPredictionsInconsistency()));
   
    Assert.assertEquals(4.,MarkovClassifier.computeInconsistency(graph,  m, new MarkovClassifier.DifferentPredictionsInconsistency(),false),Configuration.fpAccuracy);// inconsistencies detected are mostly due to state T
View Full Code Here

  @Test
  public void testCheckFanoutInconsistency1b1()
  {
    MarkovModel m = new MarkovModel(2,true,true);
    Set<List<Label>> plusStrings = buildSet(new String[][] { new String[]{"a","b"},new String[]{"c","u"} },config,converter), minusStrings = buildSet(new String[][] { new String[]{"a","u"} },config,converter);
    m.createMarkovLearner(plusStrings, minusStrings,false);
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B / A-c->B / B-u->F / T-b->T-u->T","testCheckFanoutInconsistency1b1",config, converter);
   
    Assert.assertEquals(1,new MarkovClassifier(m,graph).checkFanoutInconsistency(graph.findVertex("B"),new MarkovClassifier.DifferentPredictionsInconsistency()));
  }
 
View Full Code Here

  @Test
  public void testCheckFanoutInconsistency2()
  {
    MarkovModel m = new MarkovModel(2,true,true);
    Set<List<Label>> plusStrings = buildSet(new String[][] { new String[]{"a","b"},new String[]{"c","u"} },config,converter), minusStrings = buildSet(new String[][] { new String[]{"a","u"} },config,converter);
    m.createMarkovLearner(plusStrings, minusStrings,false);
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B / A-c->B-b->C / B-u->F / T-b->T-u->T","testCheckFanoutInconsistency2",config, converter);
   
    Assert.assertEquals(2,new MarkovClassifier(m,graph).checkFanoutInconsistency(graph.findVertex("B"),new MarkovClassifier.DifferentPredictionsInconsistency()));
  }
 
View Full Code Here

  @Test
  public void testCheckFanoutInconsistency3()
  {
    MarkovModel m = new MarkovModel(2,true,true);
    Set<List<Label>> plusStrings = buildSet(new String[][] { new String[]{"a","b"},new String[]{"c","b"},new String[]{"c","u"} },config,converter), minusStrings = buildSet(new String[][] { new String[]{"a","u"} },config,converter);
    m.createMarkovLearner(plusStrings, minusStrings,false);
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B / A-c->B-u->C / T-b->T-u->T","testCheckFanoutInconsistency3",config, converter);
   
    Assert.assertEquals(1,new MarkovClassifier(m,graph).checkFanoutInconsistency(graph.findVertex("B"),new MarkovClassifier.DifferentPredictionsInconsistency()));
  }
 
View Full Code Here

  @Test
  public void testCheckFanoutInconsistency1b2()
  {
    MarkovModel m = new MarkovModel(2,true,true);
    Set<List<Label>> plusStrings = buildSet(new String[][] { new String[]{"a","b"},new String[]{"a","u"} },config,converter), minusStrings = buildSet(new String[][] { new String[]{"a","u"} },config,converter);
    m.createMarkovLearner(plusStrings, minusStrings,false);
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B / A-c->B / B-u->F / T-b->T-u->T","testCheckFanoutInconsistency1b2",config, converter);
   
    Assert.assertEquals(0,new MarkovClassifier(m,graph).checkFanoutInconsistency(graph.findVertex("B"),new MarkovClassifier.DifferentPredictionsInconsistency()));
  }
 
View Full Code Here

  @Test
  public void testCheckFanoutInconsistency4()
  {
    MarkovModel m = new MarkovModel(2,true,true);
    Set<List<Label>> plusStrings = buildSet(new String[][] { new String[]{"a","b"},new String[]{"c","b"},new String[]{"c","u"} },config,converter), minusStrings = buildSet(new String[][] { new String[]{"a","u"} },config,converter);
    m.createMarkovLearner(plusStrings, minusStrings,false);
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->D-b->C / A-c->B-b->C / B-u->E / T-b->T-u->T","testCheckFanoutInconsistency4",config, converter);
   
   
    Assert.assertEquals(0,new MarkovClassifier(m,graph).checkFanoutInconsistency(graph.findVertex("B"),new MarkovClassifier.DifferentPredictionsInconsistency()));// everything as expected.
    Assert.assertEquals(0,new MarkovClassifier(m,graph).checkFanoutInconsistency(graph.findVertex("D"),new MarkovClassifier.DifferentPredictionsInconsistency()));// missing reject-transition with label u is ignored because we are only considering actual outgoing transitions
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.