Package statechum.analysis.learning

Examples of statechum.analysis.learning.MarkovModel.computePredictionMatrix()


   
    Set<List<Label>> plusStrings = buildSet(new String[][] {},config,converter), minusStrings = buildSet(new String[][] { new String[]{"a","a","a"},new String[]{"a","b","a"},new String[]{"a","c"} },config,converter);
    MarkovModel another = new MarkovModel(2,true,true);
    another.createMarkovLearner(plusStrings, minusStrings, false);

    Map<List<Label>,MarkovOutcome> anotherPredictionsMatrix = another.computePredictionMatrix();
    Assert.assertEquals(7,anotherPredictionsMatrix.size());
    Assert.assertEquals(MarkovOutcome.failure,anotherPredictionsMatrix.get(Arrays.asList(new Label[]{lblA,lblA})));
    Assert.assertEquals(MarkovOutcome.positive,anotherPredictionsMatrix.get(Arrays.asList(new Label[]{lblA,lblB})));
    Assert.assertEquals(MarkovOutcome.negative,anotherPredictionsMatrix.get(Arrays.asList(new Label[]{lblA,lblC})));
    Assert.assertEquals(MarkovOutcome.negative,anotherPredictionsMatrix.get(Arrays.asList(new Label[]{lblB,lblA})));
View Full Code Here


  public void testUpdateMarkovSideways2()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-c->C / B-b-#D","testUpdateMarkovSideways2",config, converter);
    MarkovModel m = new MarkovModel(2,false,true);
    new MarkovClassifier(m,graph).updateMarkov(true);
    Map<List<Label>,MarkovOutcome> mPredictionsMatrix = m.computePredictionMatrix();
    Assert.assertEquals(3,mPredictionsMatrix.size());
    Assert.assertEquals(MarkovOutcome.positive,mPredictionsMatrix.get(Arrays.asList(new Label[]{lblA,lblA})));
    Assert.assertEquals(MarkovOutcome.negative,mPredictionsMatrix.get(Arrays.asList(new Label[]{lblC,lblB})));
    Assert.assertEquals(MarkovOutcome.positive,mPredictionsMatrix.get(Arrays.asList(new Label[]{lblC,lblC})));
  }
View Full Code Here

  public void testUpdateMarkovSideways3()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovModel m = new MarkovModel(2,false,true);
    new MarkovClassifier(m,graph).updateMarkov(true);
    Map<List<Label>,MarkovOutcome> mPredictionsMatrix = m.computePredictionMatrix();
    Assert.assertEquals(9,mPredictionsMatrix.size());
    Assert.assertEquals(MarkovOutcome.positive,mPredictionsMatrix.get(Arrays.asList(new Label[]{lblA,lblA})));
    Assert.assertEquals(MarkovOutcome.positive,mPredictionsMatrix.get(Arrays.asList(new Label[]{lblA,lblC})));
    Assert.assertEquals(MarkovOutcome.positive,mPredictionsMatrix.get(Arrays.asList(new Label[]{lblC,lblA})));
   
View Full Code Here

  public void testUpdateMarkovSideways4()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovModel m = new MarkovModel(3,false,true);
    new MarkovClassifier(m,graph).updateMarkov(true);
    Map<List<Label>,MarkovOutcome> mPredictionsMatrix = m.computePredictionMatrix();
    Assert.assertEquals(6,mPredictionsMatrix.size());
    Assert.assertEquals(MarkovOutcome.positive,mPredictionsMatrix.get(Arrays.asList(new Label[]{lblA,lblB,lblC})));
    Assert.assertEquals(MarkovOutcome.positive,mPredictionsMatrix.get(Arrays.asList(new Label[]{lblA,lblB,lblA})));
   
    Assert.assertEquals(MarkovOutcome.positive,mPredictionsMatrix.get(Arrays.asList(new Label[]{lblC,lblU,lblC})));
View Full Code Here

  public void testUpdateMarkovSideways5()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovModel m = new MarkovModel(4,false,true);
    new MarkovClassifier(m,graph).updateMarkov(true);
    Map<List<Label>,MarkovOutcome> mPredictionsMatrix = m.computePredictionMatrix();
    Assert.assertTrue(mPredictionsMatrix.isEmpty());
  }

  @Test
  public void testPredictTransitionsSideways1()
View Full Code Here

  public void testPredictTransitionsSideways1()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovModel mSideways = new MarkovModel(2,false,true), mForward = new MarkovModel(2,true,true);
    new MarkovClassifier(mSideways,graph).updateMarkov(true);
    Assert.assertEquals(9,mSideways.computePredictionMatrix().size());Assert.assertTrue(mForward.computePredictionMatrix().isEmpty());
   
    List<List<Label>> interestingPaths = new LinkedList<List<Label>>();
    // nothing in Markov matrix hence no predictions.
    Assert.assertTrue(new MarkovClassifier(mForward,graph).predictTransitionsFromState(graph.findVertex("B"),null,2,interestingPaths).isEmpty());
    Assert.assertEquals(1,interestingPaths.size());Assert.assertEquals(Arrays.asList(new Label[]{lblA}),interestingPaths.get(0));
View Full Code Here

  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-b->G","testUpdateMarkovSideways3",config, converter);
    MarkovModel m = new MarkovModel(2,false,true);
    new MarkovClassifier(m,graph).updateMarkov(true);
   
    Map<List<Label>,MarkovOutcome> mPredictionsMatrix = m.computePredictionMatrix();
    Assert.assertEquals(8,mPredictionsMatrix.size());
   
    Assert.assertEquals(MarkovOutcome.failure,mPredictionsMatrix.get(Arrays.asList(new Label[]{lblB,lblU})));
   
    Assert.assertEquals(MarkovOutcome.positive,mPredictionsMatrix.get(Arrays.asList(new Label[]{lblA,lblA})));
View Full Code Here

  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovModel m = new MarkovModel(2,false,true);
    new MarkovClassifier(m,graph).updateMarkov(false);
   
    Assert.assertEquals(9+graph.getCache().getAlphabet().size(),m.computePredictionMatrix().size());
   
    final LearnerGraph graph2 = FsmParser.buildLearnerGraph("A-a->B / A-c->A / T-u->T-b->T","testCheckFanoutInconsistencySideways4",config, converter);// T is there to ensure that graph2's alphabet is the same as that of graph.
    Map<Label, MarkovOutcome> predictions = new MarkovClassifier(m,graph2).predictTransitionsFromState(graph2.getInit(),null,m.getChunkLen(),null);
   
    Assert.assertEquals(MarkovOutcome.positive,predictions.get(lblU));
View Full Code Here

    Assert.assertEquals(6438,vertexWithMostTransitions.getIntegerID());
    Assert.assertTrue(vertexWithMostTransitions.isAccept());
    Assert.assertEquals(26, MarkovPassivePairSelection.countTransitions(ptaAfterInitialMerge, inverseOfPtaAfterInitialMerge, vertexWithMostTransitions));
   
    // Check that Markov matrix is the right one
    Map<String,MarkovOutcome> map = new TreeMap<String,MarkovOutcome>();for(Entry<List<Label>, MarkovOutcome> entry:m.computePredictionMatrix().entrySet()) map.put(entry.getKey().toString(), entry.getValue());
    Assert.assertEquals("{[L1, L1, L17]=(+), [L1, L1, L28]=(+), [L1, L1, L49]=(+), [L1, L1, L53]=(+), [L1, L1, L56]=(+), [L1, L13, L21]=(+), [L1, L13, L2]=(+), [L1, L13, L59]=(+), [L1, L13]=(+), [L1, L17, L41]=(+), [L1, L17]=(+), [L1, L19, L45]=(+), [L1, L19, L55]=(+), [L1, L19]=(+), [L1, L1]=(+), [L1, L25, L13]=(+), [L1, L25, L19]=(+), [L1, L25, L25]=(+), [L1, L25]=(+), [L1, L28, L14]=(+), [L1, L28, L32]=(+), [L1, L28, L54]=(+), [L1, L28]=(+), [L1, L29, L23]=(+), [L1, L29, L45]=(+), [L1, L29]=(+), [L1, L49, L17]=(+), [L1, L49, L4]=(+), [L1, L49, L51]=(+), [L1, L49, L55]=(+), [L1, L49]=(+), [L1, L53, L13]=(+), [L1, L53, L21]=(+), [L1, L53, L23]=(+), [L1, L53, L3]=(+), [L1, L53, L40]=(+), [L1, L53, L44]=(+), [L1, L53, L45]=(+), [L1, L53, L50]=(+), [L1, L53, L51]=(+), [L1, L53, L54]=(+), [L1, L53]=(+), [L1, L56, L53]=(+), [L1, L56]=(+), [L11, L13, L2]=(+), [L11, L13, L49]=(+), [L11, L13, L59]=(+), [L11, L13]=(+), [L11, L21, L3]=(+), [L11, L21, L9]=(+), [L11, L21]=(+), [L11, L3, L17]=(+), [L11, L3, L4]=(+), [L11, L3, L51]=(+), [L11, L34, L4]=(+), [L11, L34]=(+), [L11, L3]=(+), [L11, L40, L19]=(+), [L11, L40, L37]=(+), [L11, L40]=(+), [L11, L44, L1]=(+), [L11, L44, L29]=(+), [L11, L44]=(+), [L11, L50, L53]=(+), [L11, L50]=(+), [L11, L51, L30]=(+), [L11, L51, L51]=(+), [L11, L51, L57]=(+), [L11, L51]=(+), [L11, L54, L41]=(+), [L11, L54]=(+), [L11]=(+), [L13, L1, L29]=(+), [L13, L13, L45]=(+), [L13, L13]=(+), [L13, L1]=(+), [L13, L2, L11]=(+), [L13, L2, L35]=(+), [L13, L2, L45]=(+), [L13, L21, L37]=(+), [L13, L21, L40]=(+), [L13, L21]=(+), [L13, L24, L53]=(+), [L13, L24]=(+), [L13, L2]=(+), [L13, L3, L28]=(+), [L13, L33, L53]=(+), [L13, L33]=(+), [L13, L3]=(+), [L13, L41, L40]=(+), [L13, L41, L54]=(+), [L13, L41]=(+), [L13, L44, L14]=(+), [L13, L44, L32]=(+), [L13, L44]=(+), [L13, L45, L53]=(+), [L13, L45]=(+), [L13, L49, L53]=(+), [L13, L49]=(+), [L13, L59, L1]=(+), [L13, L59, L29]=(+), [L13, L59]=(+), [L13, L9, L53]=(+), [L13, L9]=(+), [L13]=(+), [L14, L29, L21]=(+), [L14, L29, L2]=(+), [L14, L29, L49]=(+), [L14, L29, L59]=(+), [L14, L29]=(+), [L14, L39, L33]=(+), [L14, L39, L3]=(+), [L14, L39, L41]=(+), [L14, L39, L44]=(+), [L14, L39, L55]=(+), [L14, L39]=(+), [L14, L55, L17]=(+), [L14, L55, L28]=(+), [L14, L55, L49]=(+), [L14, L55, L53]=(+), [L14, L55, L56]=(+), [L14, L55]=(+), [L14, L59, L53]=(+), [L14, L59]=(+), [L14]=(+), [L16, L2, L13]=(+), [L16, L2, L21]=(+), [L16, L2, L34]=(+), [L16, L2, L3]=(+), [L16, L2, L40]=(+), [L16, L2, L44]=(+), [L16, L2, L50]=(+), [L16, L2, L51]=(+), [L16, L2, L54]=(+), [L16, L26, L53]=(+), [L16, L26]=(+), [L16, L27, L29]=(+), [L16, L27, L39]=(+), [L16, L27, L55]=(+), [L16, L27, L59]=(+), [L16, L27]=(+), [L16, L2]=(+), [L16, L35, L17]=(+), [L16, L35, L28]=(+), [L16, L35, L49]=(+), [L16, L35, L53]=(+), [L16, L35, L56]=(+), [L16, L35]=(+), [L16, L40, L33]=(+), [L16, L40, L3]=(+), [L16, L40, L41]=(+), [L16, L40, L44]=(+), [L16, L40, L47]=(+), [L16, L40, L55]=(+), [L16, L40]=(+), [L16, L44, L2]=(+), [L16, L44, L59]=(+), [L16, L44, L5]=(+), [L16, L44]=(+), [L16, L54, L13]=(+), [L16, L54, L1]=(+), [L16, L54, L24]=(+), [L16, L54, L45]=(+), [L16, L54, L9]=(+), [L16, L54]=(+), [L16]=(+), [L17, L3, L17]=(+), [L17, L3, L28]=(+), [L17, L33, L53]=(+), [L17, L33]=(+), [L17, L3]=(+), [L17, L41, L30]=(+), [L17, L41, L31]=(+), [L17, L41, L32]=(+), [L17, L41, L34]=(+), [L17, L41, L41]=(+), [L17, L41, L44]=(+), [L17, L41, L51]=(+), [L17, L41, L54]=(+), [L17, L41, L55]=(+), [L17, L41, L56]=(+), [L17, L41, L57]=(+), [L17, L41]=(+), [L17, L44, L32]=(+), [L17, L44, L54]=(+), [L17, L44]=(+), [L17, L45, L45]=(+), [L17, L45, L55]=(+), [L17, L45]=(+), [L17, L47, L21]=(+), [L17, L47, L2]=(+), [L17, L47, L49]=(+), [L17, L47, L59]=(+), [L17, L47]=(+), [L17, L55, L1]=(+), [L17, L55, L29]=(+), [L17, L55, L39]=(+), [L17, L55, L59]=(+), [L17, L55]=(+), [L17]=(+), [L19, L13, L21]=(+), [L19, L13, L2]=(+), [L19, L13, L49]=(+), [L19, L13]=(+), [L19, L19, L45]=(+), [L19, L19, L55]=(+), [L19, L19]=(+), [L19, L25, L13]=(+), [L19, L25, L19]=(+), [L19, L25, L25]=(+), [L19, L25]=(+), [L19, L45, L45]=(+), [L19, L45, L55]=(+), [L19, L45]=(+), [L19, L55, L29]=(+), [L19, L55, L39]=(+), [L19, L55, L55]=(+), [L19, L55, L59]=(+), [L19, L55]=(+), [L19]=(+), [L1]=(+), [L2, L11, L13]=(+), [L2, L11, L21]=(+), [L2, L11, L3]=(+), [L2, L11, L40]=(+), [L2, L11, L44]=(+), [L2, L11, L50]=(+), [L2, L11, L51]=(+), [L2, L11, L54]=(+), [L2, L11]=(+), [L2, L13, L21]=(+), [L2, L13, L49]=(+), [L2, L13, L59]=(+), [L2, L13]=(+), [L2, L21, L3]=(+), [L2, L21, L9]=(+), [L2, L21]=(+), [L2, L25, L26]=(+), [L2, L25, L27]=(+), [L2, L25, L2]=(+), [L2, L25, L35]=(+), [L2, L25, L40]=(+), [L2, L25, L44]=(+), [L2, L25, L54]=(+), [L2, L25]=(+), [L2, L3, L17]=(+), [L2, L3, L4]=(+), [L2, L3, L51]=(+), [L2, L3, L55]=(+), [L2, L34, L1]=(+), [L2, L34, L4]=(+), [L2, L34]=(+), [L2, L35, L11]=(+), [L2, L35, L35]=(+), [L2, L35, L45]=(+), [L2, L35]=(+), [L2, L3]=(+), [L2, L40, L19]=(+), [L2, L40, L37]=(+), [L2, L40]=(+), [L2, L44, L1]=(+), [L2, L44, L29]=(+), [L2, L44]=(+), [L2, L45, L33]=(+), [L2, L45, L3]=(+), [L2, L45, L41]=(+), [L2, L45, L44]=(+), [L2, L45, L47]=(+), [L2, L45, L55]=(+), [L2, L45]=(+), [L2, L50, L53]=(+), [L2, L50]=(+), [L2, L51, L41]=(+), [L2, L51, L51]=(+), [L2, L51, L54]=(+), [L2, L51, L56]=(+), [L2, L51]=(+), [L2, L54, L41]=(+), [L2, L54]=(+), [L21, L3, L1]=(+), [L21, L3, L24]=(+), [L21, L37, L13]=(+), [L21, L37, L19]=(+), [L21, L37, L25]=(+), [L21, L37]=(+), [L21, L3]=(+), [L21, L40, L45]=(+), [L21, L40, L55]=(+), [L21, L40]=(+), [L21, L9, L17]=(+), [L21, L9, L1]=(+), [L21, L9, L4]=(+), [L21, L9]=(+), [L21]=(+), [L23, L53, L23]=(+), [L23, L53, L45]=(+), [L23, L53]=(+), [L23]=(+), [L24, L2, L25]=(+), [L24, L2]=(+), [L24, L5, L8]=(+), [L24, L53, L23]=(+), [L24, L53, L45]=(+), [L24, L53]=(+), [L24, L59, L33]=(+), [L24, L59, L41]=(+), [L24, L59]=(+), [L24, L5]=(+), [L24]=(+), [L25, L13, L21]=(+), [L25, L13, L2]=(+), [L25, L13, L49]=(+), [L25, L13, L59]=(+), [L25, L13]=(+), [L25, L19, L45]=(+), [L25, L19, L55]=(+), [L25, L19]=(+), [L25, L2, L13]=(+), [L25, L2, L21]=(+), [L25, L2, L34]=(+), [L25, L2, L3]=(+), [L25, L2, L40]=(+), [L25, L2, L44]=(+), [L25, L2, L50]=(+), [L25, L2, L54]=(+), [L25, L25, L13]=(+), [L25, L25, L19]=(+), [L25, L25, L25]=(+), [L25, L25]=(+), [L25, L26, L53]=(+), [L25, L26]=(+), [L25, L27, L29]=(+), [L25, L27, L39]=(+), [L25, L27, L55]=(+), [L25, L27, L59]=(+), [L25, L27]=(+), [L25, L2]=(+), [L25, L35, L17]=(+), [L25, L35, L28]=(+), [L25, L35, L49]=(+), [L25, L35, L53]=(+), [L25, L35, L56]=(+), [L25, L35]=(+), [L25, L40, L33]=(+), [L25, L40, L3]=(+), [L25, L40, L41]=(+), [L25, L40, L44]=(+), [L25, L40, L47]=(+), [L25, L40, L55]=(+), [L25, L40]=(+), [L25, L44, L2]=(+), [L25, L44, L59]=(+), [L25, L44, L5]=(+), [L25, L44]=(+), [L25, L54, L13]=(+), [L25, L54, L1]=(+), [L25, L54, L24]=(+), [L25, L54, L45]=(+), [L25, L54, L9]=(+), [L25, L54]=(+), [L25]=(+), [L26, L53, L23]=(+), [L26, L53, L45]=(+), [L26, L53]=(+), [L26]=(+), [L27, L28, L28]=(+), [L27, L28, L8]=(+), [L27, L28]=(+), [L27, L29, L21]=(+), [L27, L29, L2]=(+), [L27, L29, L49]=(+), [L27, L29, L59]=(+), [L27, L29]=(+), [L27, L39, L33]=(+), [L27, L39, L3]=(+), [L27, L39, L41]=(+), [L27, L39, L44]=(+), [L27, L39, L47]=(+), [L27, L39, L55]=(+), [L27, L39]=(+), [L27, L55, L17]=(+), [L27, L55, L28]=(+), [L27, L55, L49]=(+), [L27, L55, L53]=(+), [L27, L55, L56]=(+), [L27, L55]=(+), [L27, L59, L53]=(+), [L27, L59]=(+), [L27, L8, L1]=(+), [L27, L8, L29]=(+), [L27, L8]=(+), [L27]=(+), [L28, L14, L29]=(+), [L28, L14, L39]=(+), [L28, L14, L55]=(+), [L28, L14, L59]=(+), [L28, L14]=(+), [L28, L28, L28]=(+), [L28, L28, L8]=(+), [L28, L28]=(+), [L28, L32, L30]=(+), [L28, L32, L31]=(+), [L28, L32, L32]=(+), [L28, L32, L34]=(+), [L28, L32, L41]=(+), [L28, L32, L51]=(+), [L28, L32, L54]=(+), [L28, L32, L55]=(+), [L28, L32, L56]=(+), [L28, L32, L57]=(+), [L28, L32]=(+), [L28, L54, L35]=(+), [L28, L54, L57]=(+), [L28, L54]=(+), [L28, L8, L1]=(+), [L28, L8, L29]=(+), [L28, L8]=(+), [L28]=(+), [L29, L2, L11]=(+), [L29, L2, L35]=(+), [L29, L2, L45]=(+), [L29, L21, L37]=(+), [L29, L21, L40]=(+), [L29, L21]=(+), [L29, L23, L53]=(+), [L29, L23]=(+), [L29, L2]=(+), [L29, L45, L8]=(+), [L29, L45]=(+), [L29, L49, L53]=(+), [L29, L49]=(+), [L29, L59, L1]=(+), [L29, L59, L29]=(+), [L29, L59]=(+), [L29]=(+), [L2]=(+), [L3, L1, L53]=(+), [L3, L17, L33]=(+), [L3, L17, L3]=(+), [L3, L17, L41]=(+), [L3, L17, L44]=(+), [L3, L17, L47]=(+), [L3, L17]=(+), [L3, L1]=(+), [L3, L24, L2]=(+), [L3, L24, L59]=(+), [L3, L24, L5]=(+), [L3, L24]=(+), [L3, L28, L14]=(+), [L3, L28, L32]=(+), [L3, L28, L54]=(+), [L3, L28]=(+), [L3, L4, L14]=(+), [L3, L4, L32]=(+), [L3, L4, L54]=(+), [L3, L49, L17]=(+), [L3, L49, L4]=(+), [L3, L49, L51]=(+), [L3, L49, L55]=(+), [L3, L49]=(+), [L3, L4]=(+), [L3, L51, L29]=(+), [L3, L51, L39]=(+), [L3, L51, L55]=(+), [L3, L51, L59]=(+), [L3, L51]=(+), [L3, L53, L21]=(+), [L3, L53, L34]=(+), [L3, L53, L3]=(+), [L3, L53, L44]=(+), [L3, L53, L50]=(+), [L3, L53, L51]=(+), [L3, L53]=(+), [L3, L55, L53]=(+), [L3, L55]=(+), [L3, L56, L53]=(+), [L3, L56]=(+), [L30, L3, L53]=(+), [L30, L33, L53]=(+), [L30, L33]=(+), [L30, L3]=(+), [L30, L41, L51]=(+), [L30, L41, L54]=(+), [L30, L41]=(+), [L30, L44, L14]=(+), [L30, L44, L32]=(+), [L30, L44, L54]=(+), [L30, L44]=(+), [L30, L47, L49]=(+), [L30, L47]=(+), [L30, L55, L1]=(+), [L30, L55, L29]=(+), [L30, L55]=(+), [L30]=(+), [L31, L17, L33]=(+), [L31, L17, L47]=(+), [L31, L17, L55]=(+), [L31, L17]=(+), [L31, L4, L14]=(+), [L31, L4, L32]=(+), [L31, L4, L54]=(+), [L31, L4]=(+), [L31, L51, L29]=(+), [L31, L51, L39]=(+), [L31, L51, L55]=(+), [L31, L51]=(+), [L31, L55, L53]=(+), [L31, L55]=(+), [L31]=(+), [L32, L1, L17]=(+), [L32, L1, L28]=(+), [L32, L1]=(+), [L32, L29, L23]=(+), [L32, L29, L45]=(+), [L32, L29]=(+), [L32, L30, L33]=(+), [L32, L30, L41]=(+), [L32, L30, L44]=(+), [L32, L30, L47]=(+), [L32, L30, L55]=(+), [L32, L30]=(+), [L32, L31, L17]=(+), [L32, L31, L4]=(+), [L32, L31, L51]=(+), [L32, L31, L55]=(+), [L32, L31]=(+), [L32, L32, L1]=(+), [L32, L32, L29]=(+), [L32, L32]=(+), [L32, L34, L2]=(+), [L32, L34, L59]=(+), [L32, L34]=(+), [L32, L41, L17]=(+), [L32, L41, L4]=(+), [L32, L41]=(+), [L32, L51, L3]=(+), [L32, L51, L9]=(+), [L32, L51]=(+), [L32, L54, L17]=(+), [L32, L54, L28]=(+), [L32, L54, L49]=(+), [L32, L54]=(+), [L32, L55, L29]=(+), [L32, L55, L39]=(+), [L32, L55, L59]=(+), [L32, L55]=(+), [L32, L56, L26]=(+), [L32, L56, L27]=(+), [L32, L56, L2]=(+), [L32, L56, L35]=(+), [L32, L56, L40]=(+), [L32, L56, L44]=(+), [L32, L56, L54]=(+), [L32, L56]=(+), [L32, L57, L13]=(+), [L32, L57, L52]=(+), [L32, L57]=(+), [L32]=(+), [L33, L53, L23]=(+), [L33, L53, L45]=(+), [L33, L53]=(+), [L33]=(+), [L34, L1, L13]=(+), [L34, L1, L19]=(+), [L34, L1, L25]=(+), [L34, L17, L45]=(+), [L34, L17, L55]=(+), [L34, L17]=(+), [L34, L1]=(+), [L34, L2, L11]=(+), [L34, L2, L35]=(+), [L34, L21, L37]=(+), [L34, L21, L40]=(+), [L34, L21]=(+), [L34, L2]=(+), [L34, L4, L21]=(+), [L34, L4, L2]=(+), [L34, L4, L49]=(+), [L34, L4, L59]=(+), [L34, L49, L53]=(+), [L34, L49]=(+), [L34, L4]=(+), [L34, L59, L1]=(+), [L34, L59, L29]=(+), [L34, L59]=(+), [L34]=(+), [L35, L11, L13]=(+), [L35, L11, L34]=(+), [L35, L11, L3]=(+), [L35, L11, L40]=(+), [L35, L11, L44]=(+), [L35, L11, L51]=(+), [L35, L11, L54]=(+), [L35, L11]=(+), [L35, L17, L41]=(+), [L35, L17]=(+), [L35, L28, L14]=(+), [L35, L28, L32]=(+), [L35, L28, L54]=(+), [L35, L28]=(+), [L35, L35, L11]=(+), [L35, L35, L35]=(+), [L35, L35, L45]=(+), [L35, L35]=(+), [L35, L45, L33]=(+), [L35, L45, L3]=(+), [L35, L45, L41]=(+), [L35, L45, L44]=(+), [L35, L45, L47]=(+), [L35, L45, L55]=(+), [L35, L45]=(+), [L35, L49, L17]=(+), [L35, L49, L4]=(+), [L35, L49, L51]=(+), [L35, L49, L55]=(+), [L35, L49]=(+), [L35, L53, L13]=(+), [L35, L53, L21]=(+), [L35, L53, L34]=(+), [L35, L53, L3]=(+), [L35, L53, L40]=(+), [L35, L53, L44]=(+), [L35, L53, L50]=(+), [L35, L53, L51]=(+), [L35, L53, L54]=(+), [L35, L53]=(+), [L35, L56, L53]=(+), [L35, L56]=(+), [L35, L8, L16]=(+), [L35, L8, L1]=(+), [L35, L8, L44]=(+), [L35, L8]=(+), [L35]=(+), [L37, L13, L21]=(+), [L37, L13, L2]=(+), [L37, L13, L49]=(+), [L37, L13, L59]=(+), [L37, L13]=(+), [L37, L19, L45]=(+), [L37, L19, L55]=(+), [L37, L19]=(+), [L37, L25, L13]=(+), [L37, L25, L19]=(+), [L37, L25, L25]=(+), [L37, L25]=(+), [L37, L52, L52]=(+), [L37, L52, L53]=(+), [L37, L52]=(+), [L37, L53, L2]=(+), [L37, L53, L59]=(+), [L37, L53, L5]=(+), [L37, L53]=(+), [L37]=(+), [L39, L3, L17]=(+), [L39, L3, L28]=(+), [L39, L3, L53]=(+), [L39, L3, L56]=(+), [L39, L33, L53]=(+), [L39, L33]=(+), [L39, L3]=(+), [L39, L41, L21]=(+), [L39, L41, L3]=(+), [L39, L41, L44]=(+), [L39, L41, L50]=(+), [L39, L41]=(+), [L39, L44, L14]=(+), [L39, L44, L32]=(+), [L39, L44, L54]=(+), [L39, L44]=(+), [L39, L47, L21]=(+), [L39, L47, L2]=(+), [L39, L47, L49]=(+), [L39, L47, L59]=(+), [L39, L47]=(+), [L39, L55, L1]=(+), [L39, L55, L29]=(+), [L39, L55]=(+), [L39]=(+), [L3]=(+), [L4, L14, L29]=(+), [L4, L14, L39]=(+), [L4, L14, L55]=(+), [L4, L14]=(+), [L4, L2, L11]=(+), [L4, L2, L35]=(+), [L4, L2, L45]=(+), [L4, L21, L37]=(+), [L4, L21, L40]=(+), [L4, L21]=(+), [L4, L2]=(+), [L4, L32, L32]=(+), [L4, L32, L41]=(+), [L4, L32, L51]=(+), [L4, L32, L55]=(+), [L4, L32, L56]=(+), [L4, L32, L57]=(+), [L4, L32]=(+), [L4, L49, L53]=(+), [L4, L49]=(+), [L4, L54, L35]=(+), [L4, L54, L57]=(+), [L4, L54]=(+), [L4, L59, L1]=(+), [L4, L59, L29]=(+), [L4, L59]=(+), [L40, L19, L13]=(+), [L40, L19, L19]=(+), [L40, L19, L25]=(+), [L40, L19]=(+), [L40, L3, L17]=(+), [L40, L3, L28]=(+), [L40, L3, L49]=(+), [L40, L3, L53]=(+), [L40, L3, L56]=(+), [L40, L33, L53]=(+), [L40, L33]=(+), [L40, L37, L52]=(+), [L40, L37, L53]=(+), [L40, L37]=(+), [L40, L3]=(+), [L40, L41, L21]=(+), [L40, L41, L34]=(+), [L40, L41, L3]=(+), [L40, L41, L40]=(+), [L40, L41, L44]=(+), [L40, L41, L51]=(+), [L40, L41, L54]=(+), [L40, L41]=(+), [L40, L44, L14]=(+), [L40, L44, L32]=(+), [L40, L44, L54]=(+), [L40, L44]=(+), [L40, L45, L45]=(+), [L40, L45, L55]=(+), [L40, L45]=(+), [L40, L47, L21]=(+), [L40, L47, L2]=(+), [L40, L47, L59]=(+), [L40, L47]=(+), [L40, L55, L1]=(+), [L40, L55, L29]=(+), [L40, L55, L39]=(+), [L40, L55, L55]=(+), [L40, L55, L59]=(+), [L40, L55]=(+), [L40]=(+), [L41, L1, L13]=(+), [L41, L1, L25]=(+), [L41, L13, L21]=(+), [L41, L13, L59]=(+), [L41, L13]=(+), [L41, L17, L45]=(+), [L41, L17, L55]=(+), [L41, L17]=(+), [L41, L1]=(+), [L41, L21, L3]=(+), [L41, L21, L9]=(+), [L41, L21]=(+), [L41, L3, L17]=(+), [L41, L3, L4]=(+), [L41, L3, L51]=(+), [L41, L3, L55]=(+), [L41, L30, L33]=(+), [L41, L30, L41]=(+), [L41, L30, L44]=(+), [L41, L30, L55]=(+), [L41, L30]=(+), [L41, L31, L17]=(+), [L41, L31, L4]=(+), [L41, L31, L51]=(+), [L41, L31, L55]=(+), [L41, L31]=(+), [L41, L32, L1]=(+), [L41, L32, L29]=(+), [L41, L32]=(+), [L41, L34, L17]=(+), [L41, L34, L1]=(+), [L41, L34, L21]=(+), [L41, L34, L2]=(+), [L41, L34, L49]=(+), [L41, L34, L4]=(+), [L41, L34, L59]=(+), [L41, L34]=(+), [L41, L3]=(+), [L41, L4, L21]=(+), [L41, L4, L2]=(+), [L41, L4, L49]=(+), [L41, L4, L59]=(+), [L41, L40, L19]=(+), [L41, L40, L37]=(+), [L41, L40]=(+), [L41, L41, L17]=(+), [L41, L41, L1]=(+), [L41, L41, L4]=(+), [L41, L41]=(+), [L41, L44, L1]=(+), [L41, L44, L29]=(+), [L41, L44]=(+), [L41, L4]=(+), [L41, L50, L53]=(+), [L41, L50]=(+), [L41, L51, L30]=(+), [L41, L51, L34]=(+), [L41, L51, L3]=(+), [L41, L51, L41]=(+), [L41, L51, L54]=(+), [L41, L51, L55]=(+), [L41, L51, L9]=(+), [L41, L51]=(+), [L41, L54, L28]=(+), [L41, L54, L41]=(+), [L41, L54, L49]=(+), [L41, L54, L56]=(+), [L41, L54]=(+), [L41, L55, L29]=(+), [L41, L55, L39]=(+), [L41, L55, L55]=(+), [L41, L55, L59]=(+), [L41, L55]=(+), [L41, L56, L27]=(+), [L41, L56, L35]=(+), [L41, L56, L54]=(+), [L41, L56]=(+), [L41, L57, L13]=(+), [L41, L57, L27]=(+), [L41, L57]=(+), [L41]=(+), [L44, L1, L28]=(+), [L44, L1, L49]=(+), [L44, L1, L53]=(+), [L44, L14, L29]=(+), [L44, L14, L39]=(+), [L44, L14, L55]=(+), [L44, L14, L59]=(+), [L44, L14]=(+), [L44, L1]=(+), [L44, L2, L25]=(+), [L44, L29, L23]=(+), [L44, L29, L45]=(+), [L44, L29]=(+), [L44, L2]=(+), [L44, L32, L30]=(+), [L44, L32, L31]=(+), [L44, L32, L32]=(+), [L44, L32, L34]=(+), [L44, L32, L41]=(+), [L44, L32, L51]=(+), [L44, L32, L54]=(+), [L44, L32, L56]=(+), [L44, L32, L57]=(+), [L44, L32]=(+), [L44, L5, L8]=(+), [L44, L54, L35]=(+), [L44, L54, L57]=(+), [L44, L54]=(+), [L44, L59, L33]=(+), [L44, L59, L3]=(+), [L44, L59, L41]=(+), [L44, L59, L44]=(+), [L44, L59, L47]=(+), [L44, L59, L55]=(+), [L44, L59]=(+), [L44, L5]=(+), [L44]=(+), [L45, L3, L17]=(+), [L45, L3, L49]=(+), [L45, L33, L53]=(+), [L45, L33]=(+), [L45, L3]=(+), [L45, L41, L13]=(+), [L45, L41, L34]=(+), [L45, L41, L3]=(+), [L45, L41, L50]=(+), [L45, L41, L51]=(+), [L45, L41]=(+), [L45, L44, L54]=(+), [L45, L44]=(+), [L45, L45, L45]=(+), [L45, L45, L55]=(+), [L45, L45]=(+), [L45, L47, L2]=(+), [L45, L47, L49]=(+), [L45, L47]=(+), [L45, L53, L23]=(+), [L45, L53, L45]=(+), [L45, L53]=(+), [L45, L55, L1]=(+), [L45, L55, L29]=(+), [L45, L55, L39]=(+), [L45, L55, L55]=(+), [L45, L55, L59]=(+), [L45, L55]=(+), [L45, L8, L16]=(+), [L45, L8, L1]=(+), [L45, L8, L44]=(+), [L45, L8]=(+), [L45]=(+), [L47, L2, L11]=(+), [L47, L2, L35]=(+), [L47, L2, L45]=(+), [L47, L21, L37]=(+), [L47, L21, L40]=(+), [L47, L21]=(+), [L47, L2]=(+), [L47, L49, L53]=(+), [L47, L49]=(+), [L47, L59, L1]=(+), [L47, L59, L29]=(+), [L47, L59]=(+), [L47]=(+), [L49, L17, L33]=(+), [L49, L17, L3]=(+), [L49, L17, L44]=(+), [L49, L17, L47]=(+), [L49, L17, L55]=(+), [L49, L17]=(+), [L49, L4, L14]=(+), [L49, L4, L32]=(+), [L49, L4, L54]=(+), [L49, L4]=(+), [L49, L51, L29]=(+), [L49, L51, L39]=(+), [L49, L51, L55]=(+), [L49, L51, L59]=(+), [L49, L51]=(+), [L49, L53, L23]=(+), [L49, L53, L45]=(+), [L49, L53]=(+), [L49, L55, L53]=(+), [L49, L55]=(+), [L49]=(+), [L4]=(+), [L5, L8, L16]=(+), [L5, L8, L1]=(+), [L5, L8, L44]=(+), [L5, L8]=(+), [L50, L53, L23]=(+), [L50, L53, L45]=(+), [L50, L53]=(+), [L50]=(+), [L51, L29, L21]=(+), [L51, L29, L2]=(+), [L51, L29, L49]=(+), [L51, L29, L59]=(+), [L51, L29]=(+), [L51, L3, L1]=(+), [L51, L3, L24]=(+), [L51, L30, L33]=(+), [L51, L30, L3]=(+), [L51, L30, L44]=(+), [L51, L30]=(+), [L51, L31, L4]=(+), [L51, L31]=(+), [L51, L32, L29]=(+), [L51, L32]=(+), [L51, L34, L2]=(+), [L51, L34]=(+), [L51, L39, L44]=(+), [L51, L39, L47]=(+), [L51, L39, L55]=(+), [L51, L39]=(+), [L51, L3]=(+), [L51, L41, L4]=(+), [L51, L41]=(+), [L51, L51, L3]=(+), [L51, L51, L9]=(+), [L51, L51]=(+), [L51, L54, L17]=(+), [L51, L54, L28]=(+), [L51, L54, L56]=(+), [L51, L54]=(+), [L51, L55, L17]=(+), [L51, L55, L28]=(+), [L51, L55, L29]=(+), [L51, L55, L49]=(+), [L51, L55, L53]=(+), [L51, L55, L56]=(+), [L51, L55, L59]=(+), [L51, L55]=(+), [L51, L56, L35]=(+), [L51, L56, L40]=(+), [L51, L56, L44]=(+), [L51, L56]=(+), [L51, L57, L13]=(+), [L51, L57]=(+), [L51, L59, L53]=(+), [L51, L59]=(+), [L51, L9, L17]=(+), [L51, L9, L1]=(+), [L51, L9, L4]=(+), [L51, L9]=(+), [L51]=(+), [L52, L51, L55]=(+), [L52, L51]=(+), [L52, L52, L52]=(+), [L52, L52, L53]=(+), [L52, L52]=(+), [L52, L53, L2]=(+), [L52, L53, L5]=(+), [L52, L53]=(+), [L52, L55, L53]=(+), [L52, L55]=(+), [L52]=(+), [L53, L13, L21]=(+), [L53, L13, L2]=(+), [L53, L13, L49]=(+), [L53, L13]=(+), [L53, L2, L25]=(+), [L53, L21, L3]=(+), [L53, L21, L9]=(+), [L53, L21]=(+), [L53, L23, L53]=(+), [L53, L23]=(+), [L53, L2]=(+), [L53, L3, L17]=(+), [L53, L3, L4]=(+), [L53, L3, L51]=(+), [L53, L3, L55]=(+), [L53, L34, L17]=(+), [L53, L34, L1]=(+), [L53, L34]=(+), [L53, L3]=(+), [L53, L40, L19]=(+), [L53, L40, L37]=(+), [L53, L40]=(+), [L53, L44, L1]=(+), [L53, L44, L29]=(+), [L53, L44]=(+), [L53, L45, L8]=(+), [L53, L45]=(+), [L53, L5, L8]=(+), [L53, L50, L53]=(+), [L53, L50]=(+), [L53, L51, L30]=(+), [L53, L51, L31]=(+), [L53, L51, L32]=(+), [L53, L51, L51]=(+), [L53, L51, L54]=(+), [L53, L51, L55]=(+), [L53, L51, L56]=(+), [L53, L51]=(+), [L53, L54, L41]=(+), [L53, L54]=(+), [L53, L59, L33]=(+), [L53, L59, L44]=(+), [L53, L59, L55]=(+), [L53, L59]=(+), [L53, L5]=(+), [L53]=(+), [L54, L1, L1]=(+), [L54, L1, L29]=(+), [L54, L13, L13]=(+), [L54, L13, L1]=(+), [L54, L13, L24]=(+), [L54, L13, L45]=(+), [L54, L13, L9]=(+), [L54, L13]=(+), [L54, L17, L41]=(+), [L54, L17]=(+), [L54, L1]=(+), [L54, L24, L53]=(+), [L54, L24]=(+), [L54, L28, L14]=(+), [L54, L28, L32]=(+), [L54, L28, L54]=(+), [L54, L28]=(+), [L54, L35, L8]=(+), [L54, L35]=(+), [L54, L41, L30]=(+), [L54, L41, L31]=(+), [L54, L41, L32]=(+), [L54, L41, L34]=(+), [L54, L41, L41]=(+), [L54, L41, L51]=(+), [L54, L41, L54]=(+), [L54, L41, L55]=(+), [L54, L41, L56]=(+), [L54, L41, L57]=(+), [L54, L41]=(+), [L54, L45, L53]=(+), [L54, L45]=(+), [L54, L49, L17]=(+), [L54, L49, L4]=(+), [L54, L49]=(+), [L54, L56, L53]=(+), [L54, L56]=(+), [L54, L57, L53]=(+), [L54, L57]=(+), [L54, L9, L53]=(+), [L54, L9]=(+), [L54]=(+), [L55, L1, L17]=(+), [L55, L1, L28]=(+), [L55, L1, L49]=(+), [L55, L1, L53]=(+), [L55, L1, L56]=(+), [L55, L17, L41]=(+), [L55, L17]=(+), [L55, L1]=(+), [L55, L28, L14]=(+), [L55, L28, L32]=(+), [L55, L28, L54]=(+), [L55, L28]=(+), [L55, L29, L21]=(+), [L55, L29, L23]=(+), [L55, L29, L2]=(+), [L55, L29, L45]=(+), [L55, L29, L49]=(+), [L55, L29, L59]=(+), [L55, L29]=(+), [L55, L39, L33]=(+), [L55, L39, L3]=(+), [L55, L39, L41]=(+), [L55, L39, L44]=(+), [L55, L39, L47]=(+), [L55, L39, L55]=(+), [L55, L39]=(+), [L55, L49, L17]=(+), [L55, L49, L4]=(+), [L55, L49, L51]=(+), [L55, L49, L55]=(+), [L55, L49]=(+), [L55, L53, L13]=(+), [L55, L53, L21]=(+), [L55, L53, L23]=(+), [L55, L53, L34]=(+), [L55, L53, L3]=(+), [L55, L53, L40]=(+), [L55, L53, L45]=(+), [L55, L53, L50]=(+), [L55, L53, L51]=(+), [L55, L53]=(+), [L55, L55, L17]=(+), [L55, L55, L28]=(+), [L55, L55, L49]=(+), [L55, L55, L53]=(+), [L55, L55, L56]=(+), [L55, L55]=(+), [L55, L56, L53]=(+), [L55, L56]=(+), [L55, L59, L53]=(+), [L55, L59]=(+), [L55]=(+), [L56, L2, L13]=(+), [L56, L2, L21]=(+), [L56, L2, L3]=(+), [L56, L26, L53]=(+), [L56, L26]=(+), [L56, L27, L29]=(+), [L56, L27, L39]=(+), [L56, L27, L59]=(+), [L56, L27]=(+), [L56, L2]=(+), [L56, L35, L28]=(+), [L56, L35, L49]=(+), [L56, L35, L53]=(+), [L56, L35]=(+), [L56, L40, L44]=(+), [L56, L40, L55]=(+), [L56, L40]=(+), [L56, L44, L2]=(+), [L56, L44, L59]=(+), [L56, L44]=(+), [L56, L53, L23]=(+), [L56, L53, L45]=(+), [L56, L53]=(+), [L56, L54, L13]=(+), [L56, L54, L1]=(+), [L56, L54, L24]=(+), [L56, L54, L45]=(+), [L56, L54]=(+), [L56]=(+), [L57, L13, L33]=(+), [L57, L13, L3]=(+), [L57, L13, L41]=(+), [L57, L13, L44]=(+), [L57, L13]=(+), [L57, L27, L28]=(+), [L57, L27, L8]=(+), [L57, L27]=(+), [L57, L52, L51]=(+), [L57, L52, L55]=(+), [L57, L52]=(+), [L57, L53, L23]=(+), [L57, L53, L45]=(+), [L57, L53]=(+), [L57]=(+), [L59, L1, L17]=(+), [L59, L1, L28]=(+), [L59, L1, L49]=(+), [L59, L1, L53]=(+), [L59, L1]=(+), [L59, L29, L23]=(+), [L59, L29, L45]=(+), [L59, L29]=(+), [L59, L3, L17]=(+), [L59, L3, L28]=(+), [L59, L3, L49]=(+), [L59, L3, L53]=(+), [L59, L3, L56]=(+), [L59, L33, L53]=(+), [L59, L33]=(+), [L59, L3]=(+), [L59, L41, L13]=(+), [L59, L41, L21]=(+), [L59, L41, L34]=(+), [L59, L41, L3]=(+), [L59, L41, L40]=(+), [L59, L41, L44]=(+), [L59, L41, L50]=(+), [L59, L41, L51]=(+), [L59, L41, L54]=(+), [L59, L41]=(+), [L59, L44, L14]=(+), [L59, L44, L32]=(+), [L59, L44, L54]=(+), [L59, L44]=(+), [L59, L47, L21]=(+), [L59, L47, L2]=(+), [L59, L47, L49]=(+), [L59, L47, L59]=(+), [L59, L47]=(+), [L59, L53, L23]=(+), [L59, L53, L45]=(+), [L59, L53]=(+), [L59, L55, L1]=(+), [L59, L55, L29]=(+), [L59, L55]=(+), [L59]=(+), [L5]=(+), [L8, L1, L17]=(+), [L8, L1, L53]=(+), [L8, L16, L26]=(+), [L8, L16, L27]=(+), [L8, L16, L2]=(+), [L8, L16, L35]=(+), [L8, L16, L40]=(+), [L8, L16, L44]=(+), [L8, L16, L54]=(+), [L8, L16]=(+), [L8, L1]=(+), [L8, L29, L23]=(+), [L8, L29, L45]=(+), [L8, L29]=(+), [L8, L44, L2]=(+), [L8, L44, L59]=(+), [L8, L44, L5]=(+), [L8, L44]=(+), [L8]=(+), [L9, L1, L13]=(+), [L9, L1, L19]=(+), [L9, L1, L25]=(+), [L9, L17, L55]=(+), [L9, L17]=(+), [L9, L1]=(+), [L9, L4, L2]=(+), [L9, L4, L49]=(+), [L9, L4, L59]=(+), [L9, L4]=(+), [L9, L53, L23]=(+), [L9, L53, L45]=(+), [L9, L53]=(+), [L9]=(+)}",
        map.toString());
    //ptaAfterInitialMerge.storage.writeGraphML(graphToTestComputationFrom+"_afterinitialmerge.xml");
    LearnerGraph expectedAfterInitialMerge = new LearnerGraph(config);AbstractPersistence.loadGraph(graphToTestComputationFrom+"_afterinitialmerge.xml", expectedAfterInitialMerge,converter);
    DifferentFSMException diff = WMethod.checkM(expectedAfterInitialMerge, ptaAfterInitialMerge);// checks that the graph is as expected.
View Full Code Here

  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-a->C / B-b->C-a-#D / B-c-#D","testUpdateMarkovSideways1c",config, converter);

    MarkovModel m = new MarkovModel(2,false,true);
    new MarkovClassifier(m,graph).updateMarkov(false);
    Map<List<Label>,MarkovOutcome> mPredictionsMatrix = m.computePredictionMatrix();
    Assert.assertEquals(9,mPredictionsMatrix.size());
    Assert.assertEquals(MarkovOutcome.positive,mPredictionsMatrix.get(Arrays.asList(new Label[]{lblA,lblA})));
    Assert.assertEquals(MarkovOutcome.positive,mPredictionsMatrix.get(Arrays.asList(new Label[]{lblA,lblB})));
    Assert.assertEquals(MarkovOutcome.positive,mPredictionsMatrix.get(Arrays.asList(new Label[]{lblB,lblA})));
    Assert.assertEquals(MarkovOutcome.positive,mPredictionsMatrix.get(Arrays.asList(new Label[]{lblB,lblB})));
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.