-
ca.eandb.jmist.framework.Lens.sample()
Creates the terminal EyeNode
for use by path-integration based rendering algorithms.
@param p The point on the image plane in normalized device coordinates(must fall within {@code Box2.UNIT}).
@param pathInfo The PathInfo
describing the context inwhich the path is being generated.
@param ru The first random variable (must be in [0, 1]).
@param rv The second random variable (must be in [0, 1]).
@param rj The third random variable (must be in [0, 1]).
@return A new EyeNode
.
-
ca.eandb.jmist.framework.Light.sample()
Creates the terminal LightNode
for path-integral based rendering algorithms.
@param pathInfo The PathInfo
describing the context inwhich the path is being generated.
@param ru The first random variable (must be in [0, 1]).
@param rv The second random variable (must be in [0, 1]).
@param rj The third random variable (must be in [0, 1]).
@return A new LightNode
.
-
ca.eandb.jmist.framework.color.ColorModel.sample()
eanet.com/~myandper/importance.htm">importance for illumination algorithms.
@param random The Random
number generator to use.
@return The Color
sample.
-
ca.eandb.jmist.framework.color.Spectrum.sample()
Samples this spectrum.
@param lambda The WavelengthPacket
to use to sample thespectrum.
@return The Color
sample.
-
ca.eandb.jmist.framework.color.monochrome.MonochromeColorModel.sample()
-
ca.eandb.jmist.framework.path.EyeNode.sample()
-
ca.eandb.jmist.framework.path.LightNode.sample()
-
ca.nengo.math.PDF.sample()
@return A random sample from this density
-
ca.nengo.math.impl.GaussianPDF.sample()
@see ca.nengo.math.PDF#sample()
-
ca.nengo.math.impl.IndicatorPDF.sample()
@see ca.nengo.math.PDF#sample()
-
ca.nengo.math.impl.PoissonPDF.sample()
@see ca.nengo.math.PDF#sample()
-
cc.mallet.grmm.inference.ExactSampler.sample()
-
cc.mallet.grmm.inference.GibbsSampler.sample()
-
cern.colt.matrix.DoubleFactory2D.sample()
Constructs a randomly sampled matrix with the given shape. Randomly picks exactly Math.round(rows*columns*nonZeroFraction) cells and initializes them to value, all the rest will be initialized to zero. Note that this is not the same as setting each cell with probability nonZeroFraction to value. Note: The random seed is a constant.
@throws IllegalArgumentException if nonZeroFraction < 0 || nonZeroFraction> 1.
@see cern.jet.random.sampling.RandomSampler
-
com.higherfrequencytrading.testing.Histogram.sample()
-
com.mapr.synth.distributions.TermGenerator.sample()
-
com.mapr.synth.samplers.NameSampler.sample()
-
com.mapr.synth.samplers.SchemaSampler.sample()
-
com.mapr.synth.samplers.StringSampler.sample()
-
com.statslibextensions.statistics.distribution.ScaledInverseGammaCovDistribution.sample()
-
engine.graphics.synthesis.texture.CacheTileManager.TileCacheEntry.sample()
-
gov.sandia.cognition.statistics.distribution.InverseGammaDistribution.sample()
-
gov.sandia.cognition.statistics.distribution.MultivariateGaussian.sample()
-
gov.sandia.cognition.statistics.distribution.MultivariateStudentTDistribution.sample()
-
org.apache.commons.math3.distribution.BetaDistribution.sample()
esus.ox.ac.uk/~clifford/a5/chap1/node5.html"> Inversion Method to generate exponentially distributed random values from uniform deviates.
@return a random value.
@since 2.2
-
org.apache.commons.math3.distribution.ExponentialDistribution.sample()
esus.ox.ac.uk/~clifford/a5/chap1/node5.html"> Inversion Method to generate exponentially distributed random values from uniform deviates.
@return a random value.
@since 2.2
-
org.apache.commons.math3.distribution.IntegerDistribution.sample()
Generate a random value sampled from this distribution.
@return a random value
@since 3.0
-
org.apache.commons.math3.distribution.NormalDistribution.sample()
{@inheritDoc}
-
org.apache.commons.math3.distribution.PoissonDistribution.sample()
epfl.ch/cmos/Pmmi/interactive/rng7.htm"> here. The Poisson process (and hence value returned) is bounded by 1000 * mean.
- For large means, uses the rejection algorithm described in
Devroye, Luc. (1981).The Computer Generation of Poisson Random Variables Computing vol. 26 pp. 197-207.
@return a random value.
@since 2.2
-
org.apache.commons.math3.distribution.RealDistribution.sample()
Generate a random value sampled from this distribution.
@return a random value.
-
org.apache.commons.math3.distribution.UniformIntegerDistribution.sample()
{@inheritDoc}
-
org.apache.commons.math3.distribution.UniformRealDistribution.sample()
{@inheritDoc}
-
org.apache.commons.math3.distribution.WeibullDistribution.sample()
esus.ox.ac.uk/~clifford/a5/chap1/node5.html"> Inversion Method to generate exponentially distributed random values from uniform deviates.
@return a random value.
@since 2.2
-
org.apache.jmeter.protocol.http.sampler.HTTPSampler.sample()
-
org.apache.jmeter.protocol.http.sampler.HTTPSamplerBase.sample()
Do a sampling and return its results.
@param e Entry
to be sampled
@return results of the sampling
-
org.apache.jmeter.samplers.Sampler.sample()
Obtains statistics about the given Entry, and packages the information into a SampleResult.
@param e !ToDo (Parameter description)
@return !ToDo (Return description)
-
org.apache.mahout.clustering.dirichlet.models.NormalModel.sample()
TODO: Return a proper sample from the posterior. For now, return an instance with the same parameters
@return an NormalModel
-
org.apache.mahout.clustering.lda.LDASampler.sample()
@param topicDistribution vector of p(topicId) for all topicId < model.numTopics()
@param numSamples the number of times to sample (with replacement) from the model
@return array of length numSamples, with each entry being a sample from the model. Theremay be repeats
-
org.apache.mahout.knn.LumpyData.sample()
-
org.apache.mahout.math.random.ChineseRestaurant.sample()
-
org.apache.mahout.math.random.MultiNormal.sample()
-
org.apache.mahout.math.stats.Sampler.sample()
-
org.apache.openejb.api.Monitor.sample()
-
plm.hmm.DlmHiddenMarkovModel.sample()
Sample a trajectory up to time T. Note: this method will add the filter's current input to the initial (and all other) states, so if you set the model input, the offset/input will be added twice to the initial state.
@param random
@param numSamples
@return
-
prefuse.data.parser.TypeInferencer.sample()
Sample the given text string for the given data column index.
@param column the data column index of the sample
@param value the text string sample
-
twitter4j.TwitterStream.sample()
tter.com/Streaming-API-Documentation#sample">Twitter API Wiki / Streaming API Documentation - sample
@since Twitter4J 2.0.10
-
vanilla.java.processingengine.testing.Histogram.sample()